Abstract:
Methods, apparatus, and systems for controlling a telesurgical system are disclosed. In accordance with a method, a first tool connected to a first manipulator of the system, and a second tool connected to a second manipulator of the system, are controlled. A swap of the tools such that the first tool is connected to the second manipulator and the second tool is connected to the first manipulator is then detected. The first tool connected to the second manipulator and the second tool connected to the first manipulator are then controlled.
Abstract:
A slave manipulator manipulates a medical device in response to operator manipulation of an input device through joint control systems. The stiffness and strength of the slave manipulator are adjustable according to criteria such as the mode of operation of the slave manipulator, the functional type of the medical device currently being held by the slave manipulator, and the current phase of a medical procedure being performed using the slave manipulator by changing corresponding parameters of the control system. For safety purposes, such changes are not made until it is determined that it can be done in a smooth manner without causing jerking of the medical device. Further, an excessive force warning may be provided to surgery staff when excessive forces are being commanded on the slave manipulator for more than a specified period of time.
Abstract:
Robotic and/or surgical devices, systems, and methods include kinematic linkage structures and associated control systems configured to facilitate preparation of the system for use. In some embodiments, actively driven joints will move a platform structure that supports multiple manipulators in response to movement of one of the manipulators, facilitating and expediting the arrangement of the overall system by moving those multiple manipulators as a unit into alignment with the workspace. Systems and methods are also provided to keep one, some, or all joints of the kinematic chain off a hardstop or physical range of motion limit associated with the joint or to otherwise maintain a desired range of motion for one, some, or all joints of the kinematic chain when exiting a set-up mode.
Abstract:
A teleoperational medical system for performing a medical procedure in a surgical field includes a teleoperational assembly having a plurlity of motorized surgical arms configured to assist in a surgical procedure. It also includes an input device configured to receive an input to move all the arms of the plurality of motorized surgical arms to a pre-established position. A processing system is configured to receive the input form the input device and output control signals to each arm of the plurality of motorized surgical arms to move each arm to the pre-established position.
Abstract:
A method of assigning an auxiliary input device to control a surgical instrument in a robotic surgical system can include automatically assigning an auxiliary input device to control an auxiliary function of a surgical instrument based on a position of the auxiliary input device and which of a user's hands is operating another input device operably coupled to control movement of the surgical instrument. A system for controlling a surgical instrument may include an input device of a surgical system that is operably coupled to generate and transmit an input control signal to control movement of a surgical instrument operably coupled to the surgical system. The system may further include an auxiliary input device, and a control system operably coupling the auxiliary input device to control an auxiliary function of the surgical instrument based on a position of the auxiliary input device and which of a user's hands is operating the input device.
Abstract:
An apparatus comprises a memory device and a processor coupled to a display device, an image capture device, and the memory device. The processor is configured to: cause images captured by the image capture device to be displayed in a viewing area on the display device; determine a position of a tool in a reference frame of the image capture device; determine a position to display a non-depictive symbol for the tool in a boundary area circumscribing the viewing area to indicate a direction of the determined position of the tool relative to a field of view of the image capture device, by determining a trajectory of the tool; and cause the non-depictive symbol to be displayed at the determined position in the boundary area while images that were captured by the image capture device are restricted to being displayed in the viewing area.
Abstract:
Inter-operative switching of tools in a robotic system includes a system with a plurality of manipulators and a controller. The controller is configured to detect mounting of a first imaging device to a first manipulator of the plurality of manipulators, the first imaging device having a first reference frame; in response to detecting the mounting of the first imaging device, control a tool relative to the first reference frame using a second manipulator of the plurality of manipulators, the tool being mounted to the second manipulator; detect mounting of a second imaging device to a third manipulator of the plurality of manipulators, the second imaging device having a second reference frame; and in response to detecting the mounting of the second imaging device, control the tool relative to the second reference frame using the second manipulator.
Abstract:
A teleoperational medical system for performing a medical procedure in a surgical field includes a teleoperational assembly having a plurality of motorized surgical arms configured to assist in a surgical procedure. It also includes an input device configured to receive an input to move all the arms of the plurality of motorized surgical arms to a pre-established position. A processing system is configured to receive the input form the input device and output control signals to each arm of the plurality of motorized surgical arms to move each arm to the pre-established position.
Abstract:
A method of assigning an auxiliary input device to control a surgical instrument in a computer-assisted surgical system includes detecting a first surgical instrument coupled to a first manipulator interface assembly of a computer-assisted surgical system, the first manipulator interface assembly being controlled by a first input device. The method further includes detecting an initial relative position of the first input device and either assigning control of an auxiliary function of the first surgical instrument to a first auxiliary input device disposed in a left position relative to a second auxiliary input device if the initial relative position of the first input device is detected to be at a left position relative to a second input device or assigning may also include assigning control of an auxiliary function of the first surgical instrument to the second auxiliary input device disposed in a right position relative to the first auxiliary input device if the initial relative position the first input device is detected to be at a right position relative to the second input device.
Abstract:
A teleoperational medical system for performing a medical procedure in a surgical field includes a teleoperational assembly having a plurality of motorized surgical arms configured to assist in a surgical procedure. It also includes an input device configured to receive an input to move all the arms of the plurality of motorized surgical arms to a pre-established position. A processing system is configured to receive the input form the input device and output control signals to each arm of the plurality of motorized surgical arms to move each arm to the pre-established position.