摘要:
A silicon photon detector device and methodology are provided for detecting incident photons in a partially depleted floating body SOI field-effect transistor (310) which traps charges created by visible and mid infrared light in a floating body region (304) when the silicon photon detector is configured in a detect mode, and then measures or reads the resulting enhanced drain current with a current detector in a read mode.
摘要:
Analysis of a semiconductor die having silicon-on-insulator (SOI) structure is enhanced by accessing the circuitry within the die from the back side without necessarily breaching or needing to breach the thin insulator layer of the SOI structure. According to an example embodiment of the present invention, a portion of substrate is removed from the back side of a semiconductor die having a SOI structure and a backside opposite circuitry in a circuit side. An exposed region is formed where the substrate has been removed. A detectable response from the exposed region is induced, for example, by an electron beam, as a function of a portion of the active circuitry within the die.
摘要:
Circuitry within a semiconductor die is analyzed by applying an electric field without necessarily directly accessing the circuitry. According to an example embodiment of the present invention, an electric field is applied to a semiconductor die and used to stimulate circuitry therein. A photoemission response of the die to the electric field is detected and used to detect an electrical characteristic of the die. This is particularly useful in applications where it is desired to direct stimulation to the die from an external source and to also externally detect a response of the die to the stimulation. In this manner, the die can be tested without necessarily directly contacting the die and, when the electric field is applied in a scanning mode over the die, can be effected without necessarily knowing the location of a defect in the die.
摘要:
An integrated circuit die having silicon on insulator (SOI) structure is analyzed in a manner that enhances the ability to detect photoemissions from the die. According to an example embodiment of the present invention, one of two or more lenses having a higher relative photon count is identified and used to analyze a semiconductor die. The die has at least a portion of the insulator of the SOI structure exposed, and photon emissions are detected using each lens via the exposed insulator in response to the die being stimulated. The number of photons detected using each lens is compared, and the lens having a higher photon count rate is identified, optimizing the photon count for the particular type of die preparation used to expose the insulator. The identified lens is then used with the high-speed detector to detect photoemissions from the die, and the detected photoemissions are used to analyze the die.
摘要:
Analysis of a semiconductor die having silicon-on-insulator (SOI) structure is enhanced by accessing the circuitry within the die from the back side without breaching the thin insulator layer of the SOI structure. According to an example embodiment, a portion of substrate is removed from the hack side of a semiconductor die having a SOI structure and a backside opposite circuitry in a circuit side. Electrical connection is made to a portion of the circuitry within the die via a capacitive coupling arrangement. The electrical connection is used to obtain an electrical measurement from the die that is used for analysis.
摘要:
A method and system providing single point high spatial and timing resolution for photoemission microscopy of an integrated circuit. A microscope having an objective lens forming a focal plane is arranged to view the integrated circuit, and an aperture element having an aperture is optically aligned in the back focal plane of the microscope. The aperture element is positioned for viewing a selected area of the integrated circuit. A photo-diode optically aligned with the aperture to detect photoemissions when test signals are applied to the integrated circuit.
摘要:
According to an example embodiment of the present invention a semiconductor die having a resistive electrical connection is analyzed. Heat is directed to the die as the die is undergoing a state-changing operation to cause a failure due to suspect circuitry. The die is monitored, and a circuit path that electrically changes in response to the heat is detected and used to detect that a particular portion therein of the circuit is resistive. In this manner, the detection and localization of a semiconductor die defect that includes a resistive portion of a circuit path is enhanced.
摘要:
According to one aspect of the disclosure and a particular example application directed to a flip-chip packaged die, a method for detecting a defect in a surface of the die includes directing light through a first beam splitter; directing light of a known wavelength at the beam splitter, wherein the first beam splitter is adapted to direct a first beam of light into the back side of the semiconductor die which reflects a second beam of light back; and redirecting the second beam to a second beam splitter, the second beam splitter generating third and fourth beams of light. Analysis of the third and fourth beams of light is then performed, and this analysis can include using detectors in respective paths of the third and fourth beams of light to generate an arrival time differential and then comparing the differential with a reference previously generated using a nondefective die.
摘要:
According to an example embodiment, a system for testing a semiconductor die is provided. The semiconductor die has circuitry on one side and silicon on an opposite side, and the opposite side may be AR coated. The opposite side is thinned, the die is powered, and a portion of the circuitry is heated to cause a reaction (e.g., a circuit failure or recovery) in a target region. The circuitry is monitored, and the circuit that reacts to the heat is detected and analyzed.
摘要:
Methods and apparatus for inspecting a sample are provided. In one aspect, a method of inspection is provided that includes generating an entangled set of particle beams and directing one of the entangled set of particle beams to a location of a workpiece. One of the entangled set of particle beams interacts with the location of the workpiece. One of the entangled set of particle beams is observed after the interaction with the location of the workpiece to inspect the location of the workpiece.