摘要:
A power trench transistor comprises a semiconductor body in which a cell array and an edge region surrounding the cell array are formed. First edge trenches are formed within the edge region. The first edge trenches contain field electrodes and the longitudinal orientations of the first edge trenches run from the cell array towards the edge of the trench transistor.
摘要:
A semiconductor device is disclosed. One embodiment provides a top surface. A first lateral semiconductor region is arranged adjacent to the top surface and includes a transistor structure. The transistor structure includes a drain zone of a first conductivity type. A second lateral semiconductor region is arranged below the first semiconductor region and includes a junction field-effect transistor structure. The junction field-effect transistor structure includes a source zone of the first conductivity type which is electrically connected to the drain zone of the transistor structure.
摘要:
A method is specified for the operation of an automation device provided for the receiving of telegrams together with such an automation device, which is distinguished by the fact that the automation device manages a resource pool for telegrams which are arriving or received, that the automation device distinguishes between active and new communication relationships with a remote communication participant and that for each new communication relationship a free resource is selected from the resource pool and thereafter is used for this communication relationship, which thereby becomes an active communication relationship.
摘要:
A percutaneous cannula is provided that directs blood into a vessel of a patient. The cannula includes a main cannula portion and a tip portion. The tip portion directs blood-flow in a direction generally counter to the direction of flow through the lumen. The cannula is configured to prevent blood-flow exiting the distal end from immediately discharging against a wall of the vessel.
摘要:
A percutaneous cannula is provided that directs blood into a vessel of a patient. The cannula includes a main cannula portion and a tip portion. The tip portion directs blood-flow in a direction generally counter to the direction of flow through the lumen. The cannula is configured to prevent blood-flow exiting the distal end from immediately discharging against a wall of the vessel.
摘要:
A power trench transistor comprises a semiconductor body in which a cell array and an edge region surrounding the cell array are formed. First edge trenches are formed within the edge region. The first edge trenches contain field electrodes and the longitudinal orientations of the first edge trenches run from the cell array towards the edge of the trench transistor.
摘要:
A percutaneous cannula is provided that directs blood into a vessel of a patient. The cannula includes a main cannula portion and a tip portion. The tip portion directs blood-flow in a direction generally counter to the direction of flow through the lumen. The cannula is configured to prevent blood-flow exiting the distal end from immediately discharging against a wall of the vessel.
摘要:
The method for producing a micromechanical component includes the following steps: producing a semi-finished micromechanical component; producing openings and forming a cavity; sealing the opening with sealing lids; removing material on the top surface of the first membrane layer, the surface of the first membrane layer being exposed and planarized. The invention also relates to a micromechanical component which can be produced according to the above method and to its use in sensors such as pressure sensors, microphones, or acceleration sensors.
摘要:
A low impedance VDMOS semiconductor component having a planar gate structure is described. The VDMOS semiconductor component contains a semiconductor body of a first conductivity type having two main surfaces, including a first main surface and a second main surface disposed substantially opposite to one another. A highly doped first zone of the first conductivity type is disposed in an area of the first main surface. A second zone of a second conductivity type separates the first zone from the semiconductor body. The first zone and the second zone have a trench with a bottom formed therein reaching down to the semiconductor body. An insulating material fills the trench at least beyond an edge of the second zone facing the semiconductor body. A region of the second conductivity type surrounds an area of the bottom of the trench.
摘要:
A semiconductor component having a structure for avoiding parallel-path currents in the semiconductor component includes a substrate of a first conductivity type having a surface. A plurality of separate wells of a second conductivity type with a more highly doped edge layer of the second conductivity type are disposed at the surface of the substrate and are isolated from one another by pn junctions. At least one of the wells is completely surrounded by an insulating well of the first conductivity type. The doping of the insulating well is higher than that of the substrate. A method for fabricating a semiconductor component is also provided.