Abstract:
The present invention relates to negative-working imageable elements that can be used for the manufacture of printing plates. These imageable elements can be developed on on-press by the action of a lithographic printing ink used in combination with either water or a fountain solution. The imageable elements comprise an imageable layer that is not removable in water or fountain solution alone. The imageable layer includes a free radically polymerizable compound, a free radical initiator composition, an infrared radiation absorbing compound, and a polymeric binder comprising poly(alkylene oxide) pendant groups, and preferably additionally pendant cyano groups.
Abstract:
A system, method, and computer program for producing a visualization format from CAD data comprising producing a BREP model for visualization, wherein said BREP model has a topology component and a geometry component; removing a plurality of redundant control points from said geometry component; normalizing a plurality of knot vectors and a plurality of weight components from said geometry component; recognizing an analytic geometry from said geometry component; recognizing a plurality of equivalents from said geometry component; and converting said analytic geometry to said light model representation, and appropriate means and computer-readable instructions.
Abstract:
The present invention provides methods of imagewise exposing a thermally sensitive composition formed from a nanopaste comprising inorganic nanoparticles, a carrier, and preferably certain polymeric binders. The composition has been applied to a substrate and treated to improve adhesion. Exposure affects the solubility of exposed portions of the applied and treated layer relative to unexposed portions of the applied layer. The imaged layer is then developed on-press with a fountain solution, lithographic ink, or both, to remove the exposed portions or unexposed portions of the layer to form an image in a printing plate.
Abstract:
The present invention provides methods of imagewise exposing a thermally sensitive composition formed from a nanopaste comprising inorganic nanoparticles, a carrier, and preferably certain polymeric binders. The composition has been applied to a substrate and treated to improve adhesion. Exposure affects the solubility of exposed portions of the applied and treated layer relative to unexposed portions of the applied layer. The imaged layer is then developed on-press with a fountain solution, lithographic ink, or both, to remove the exposed portions or unexposed portions of the layer to form an image in a printing plate.
Abstract:
Imageable elements, useful as on press developable lithographic printing plate precursors, are disclosed. The elements comprise an imageable layer over a substrate and an one or more adhesion promoting ingredients. The imageable layer comprises a polymerizable compound and a polymeric binder. The adhesion promoting ingredients are titanium chelate and/or co-polymers of a monomer having a polethylene oxide side chain with a monomer having either an acidic group or an anhydride group that has been ring opened to form an acidic group or groups.
Abstract:
The present invention provides an initiator system including an infrared-absorbing compound that exhibits an electronic transition band in the near-infrared region, an initiator, and a metallocene compound. Upon exposure to infrared radiation, the initiator system is capable of producing radicals sufficient to initiate a photopolymerization reaction. Suitable infrared-absorbing compounds include indocyanine dyes, for example. Trihalomethyl triazine compounds and onium compounds are suitable initiators. Suitable metallocene compounds include ferrocenes and titanocenes. The present invention also provides an infrared-sensitive composition including an ethylenically unsaturated polymerizable component, an infrared-absorbing compound that exhibits an electronic transition band in the near-infrared region, an initiator, and a metallocene compound. The infrared-sensitive composition provides improved photospeed and sensitivity in some embodiments. A printing plate precursor including an infrared-sensitive coating is also provided. The printing plate precursor exhibits enhanced shelf life in some embodiments. A method of making a printing plate precursor and a method for making a printable lithographic printing plate are further provided by the invention.
Abstract:
The present invention relates to a polymerizable coating composition suitable for the manufacture of printing plates, which may be developable on-press. The coating composition comprises (i) a polymerizable compound and (ii) a polymeric binder comprising polyethylene oxide segments, wherein the polymeric binder is selected from the group consisting of at least one graft copolymer comprising a main chain polymer and polyethylene oxide side chains, a block copolymer having at least one polyethylene oxide block and at least one non-polyethylene oxide block, and a combination thereof. The invention is also directed to an imageable element comprising a substrate and the polymerizable coating composition.
Abstract:
A method for making a relief printing plate from an imageable lithographic printing plate precursor. The relief printing plate has ink-receptive cured areas, and ink-repellent non-image areas. The method comprises the steps of: a) imaging the lithographic printing plate precursor to produce ink-receptive image areas and ink-repellent non-image areas; b) applying a curable composition to form a coating on ink-receptive image areas; and c) curing the coating to produce ink-receptive cured areas. The method of another embodiment further comprises the steps of: d) applying a curable composition to form a coating on ink-receptive cured areas; e) curing the coating on the cured areas; and f) repeating steps d) and e) to attain a desired relief depth for the ink-receptive cured areas. In the practice of an embodiment of the invention, a modified rotary printing press may be employed to make a relief printing plate from a lithographic printing plate.
Abstract:
A direct-to-press imaging method comprises: (a) applying an imageable coating to a printing cylinder, wherein the imageable coating comprises a composition such as a thermally switchable polymer which changes affinity for a printing fluid upon exposure to imaging radiation such as infrared radiation delivered imagewise via a laser, and the imageable coating is substantially insoluble in the printing fluid; (b) imagewise exposing the imageable coating to actinic radiation to obtain an imaged coating; (c) printing a plurality of copies of an image from the imaged coating; and (d) reapplying the imageable coating as desired by repeating steps (a) through (c) at least once without substantially removing the prior imaged coating before reapplying the imageable coating.
Abstract:
Thermally imageable elements and methods for their preparation and use are disclosed. The elements contain, in order, a substrate; an underlayer; and an ink-repellent layer. The underlayer contains a crosslinked allyl functional polyurethane. A photothermal conversion material is present in either in the underlayer or in an absorber layer between the underlayer and the ink-repellent layer. Thermal imaging and development removes the ink-repellent layer and reveals the underlayer in the exposed regions to form an imaged element useful as a waterless lithographic printing plate.