摘要:
Fuses for integrated circuits and semiconductor devices, methods for making and using the same, and semiconductor devices containing the same. The semiconductor fuse contains two conductive layers, an overlying and underlying layer, on an insulating substrate. The underlying layer comprises titanium nitride and the overlying layer comprises tungsten silicide. The semiconductor fuse may be fabricated during manufacture of a local interconnect structure containing the same materials. The fuse, which may be used to program redundant circuitry, is blown by electrical current rather than laser beams, thus allowing the fuse width to be smaller than prior art fuses blown by laser beams. The fuse may also be blown by less electrical current than the current required to blow conventional polysilicon fuses having similar dimensions.
摘要:
A wafer bonding method of forming silicon-on-insulator comprising integrated circuitry includes nitridizing at least a portion of an outer surface of silicon of a device wafer. After the nitridizing, the device wafer is joined with a handle wafer. A method of forming silicon-on-insulator comprising integrated circuitry includes nitridizing an interface of the silicon comprising layer of silicon-on-insulator circuitry with the insulator layer of the silicon-on-insulator circuitry. After the nitridizing, a field effect transistor gate is formed operably proximate the silicon comprising layer. Other methods are disclosed. Integrated circuitry is contemplated regardless of the method of fabrication.
摘要:
A method for reducing the effective thickness of a gate oxide using nitrogen implantation and anneal subsequent to dopant implantation and activation is provided. More particularly, the present invention provides a method for fabricating semiconductor devices, for example, transistors, which include a hardened gate oxide and which may be characterized by a relatively large nitrogen concentration at the polysilicon/gate oxide interface and a relatively small nitrogen concentration within the gate oxide and at the gate oxide/substrate interface. Additionally, the present invention provides a method for fabricating a semiconductor device having a metal gate strap (e.g., a metal silicide layer) disposed over the polysilicon layer thereof, which device includes a hardened gate oxide and which may be characterized by a relatively large nitrogen concentration at the silicide/polysilicon interface to substantially prevent cross-diffusion.
摘要:
In accordance with an aspect of the invention, a semiconductor processing method of forming field effect transistors includes forming a first gate dielectric layer over a first area configured for forming p-type field effect transistors and a second area configured for forming n-type field effect transistors, both areas on a semiconductor substrate. The first gate dielectric layer is silicon dioxide having a nitrogen concentration of 0.1% molar to 10.0% molar within the first gate dielectric layer, the nitrogen atoms being higher in concentration within the first gate dielectric layer at one elevational location as compared to another elevational location. The first gate dielectric layer is removed from over the second area while leaving the first gate dielectric layer over the first area, and a second gate dielectric layer is formed over the second area. The second gate dielectric layer is a silicon dioxide material substantially void of nitrogen atoms. Transistor gates are formed over the first and second gate dielectric layers, and then p-type source/drain regions are formed proximate the transistor gates in the first area and n-type source/drain regions are formed proximate the transistor gates in the second area.
摘要:
A field effect transistor having a doped region in the substrate immediately underneath the gate of the transistor and interposed between the source and drain of the transistor is provided. The doped region has a retrograde dopant profile such that the doping concentration immediately adjacent the gate is selected to allow for the formation of a channel when a threshold voltage is applied to the gate thereby eliminating the need for an enhancement doping step during formation of the transistor. The retrograde doping profile increases with the depth into the substrate which inhibits stray currents from traveling between the source and drain of the transistor in the absence of the formation of a channel as a result of voltage being applied to the gate of the transistor.
摘要:
In accordance with an aspect of the invention, a semiconductor processing method of forming field effect transistors includes forming a first gate dielectric layer over a first area configured for forming p-type field effect transistors and a second area configured for forming n-type field effect transistors, both areas on a semiconductor substrate. The first gate dielectric layer is silicon dioxide having a nitrogen concentration of 0.1% molar to 10.0% molar within the first gate dielectric layer, the nitrogen atoms being higher in concentration within the first gate dielectric layer at one elevational location as compared to another elevational location. The first gate dielectric layer is removed from over the second area while leaving the first gate dielectric layer over the first area, and a second gate dielectric layer is formed over the second area. The second gate dielectric layer is a silicon dioxide material substantially void of nitrogen atoms. Transistor gates are formed over the first and second gate dielectric layers, and then p-type source/drain regions are formed proximate the transistor gates in the first area and n-type source/drain regions are formed proximate the transistor gates in the second area.
摘要:
A 5 Transistor Static Random Access Memory (5T SRAM) is designed for reduced cell size and immunity to process variation. The 5T SRAM includes a storage element for storing data, wherein the storage element is coupled to a first voltage and a ground voltage. The storage element can include symmetrically sized cross-coupled inverters. A single access transistor controls read and write operations on the storage element. Control logic is configured to generate a value of the first voltage a write operation that is different from the value of the first voltage for a read operation.
摘要:
An electrically programmable gate oxide anti-fuse device includes an anti-fuse aperture having anti-fuse links that include metallic and/or semiconductor electrodes with a dielectric layer in between. The dielectric layer may be an interlayer dielectric (ILD), an intermetal dielectric (IMD) or an etch stop layer. The anti-fuse device may includes a semiconductor substrate having a conductive gate (e.g., a high K metal gate) disposed on a surface of the substrate, and a dielectric layer disposed on the conductive gate. A stacked contact can be disposed on the dielectric layer and a gate contact is disposed on an exposed portion of the gate.
摘要:
A method for reducing the effective thickness of a gate oxide using nitrogen implantation and anneal subsequent to dopant implantation and activation is provided. More particularly, the present invention provides a method for fabricating semiconductor devices, for example, transistors, which include a hardened gate oxide and which may be characterized by a relatively large nitrogen concentration at the polysilicon/gate oxide interface and a relatively small nitrogen concentration within the gate oxide and at the gate oxide/substrate interface. Additionally, the present invention provides a method for fabricating a semiconductor device having a metal gate strap (e.g., a metal silicide layer) disposed over the polysilicon layer thereof, which device includes a hardened gate oxide and which may be characterized by a relatively large nitrogen concentration at the silicide/polysilicon interface to substantially prevent cross-diffusion.
摘要:
An integrated circuit device comprising a first elongate structure and a second elongate structure arranged parallel to each other and defining a space therebetween. The integrated circuit device also includes conductive structures distributed in the space between the first and second elongate structures. At least a first one of the conductive structures is placed closer to the first elongate structure than to the second elongate structure. At least a second one of the conductive structures is placed closer to the second elongate structure than to the first elongate structure.