摘要:
Techniques for transmitting data using a combination of transmit diversity schemes are described. These transmit diversity schemes include spatial spreading, continuous beamforming, cyclic delay diversity, space-time transmit diversity (STTD), space-frequency transmit diversity (SFTD), and orthogonal transmit diversity (OTD). A transmitting entity processes one or more (ND) data symbol streams based on a transmit diversity scheme (e.g., STTD, SFTD, or OTD) to generate multiple (NC) coded symbol streams. Each data symbol stream may be sent as a single coded symbol stream or as multiple (e.g., two) coded symbol streams using STTD, SFTD, or OTD. The transmitting entity may perform spatial spreading on the NC coded symbol streams with different matrices to generate multiple (NT) transmit symbol streams for transmission from NT antennas. Additionally or alternatively, the transmitting entity may perform continuous beamforming on the NT transmit symbol streams in either the time domain or the frequency domain.
摘要:
Frequency-independent eigensteering in MISO and MIMO systems are described. For principal mode and multi-mode eigensteering, a correlation matrix is computed for a MIMO channel based on channel response matrices and decomposed to obtain NS frequency-independent steering vectors for NS spatial channels of the MIMO channel. ND data symbol streams are transmitted on ND best spatial channels using ND steering vectors, where ND=1 for principal mode eigensteering and ND>1 for multi-mode eigensteering. For main path eigensteering, a data symbol stream is transmitted on the best spatial channel for the main propagation path (e.g., with the highest energy) of the MIMO channel. For receiver eigensteering, a data symbol stream is steered toward a receive antenna based on a steering vector obtained for that receive antenna. For all eigensteering schemes, a matched filter is derived for each receive antenna based on the steering vector(s) and channel response vectors for the receive antenna.
摘要:
For eigenmode transmission with minimum mean square error (MMSE) receiver spatial processing, a transmitter performs spatial processing on NS data symbol streams with steering vectors to transmit the streams on NS spatial channels of a MIMO channel. The steering vectors are estimates of transmitter steering vectors required to orthogonalize the spatial channels. A receiver derives a spatial filter based on an MMSE criterion and with an estimate of the MIMO channel response and the steering vectors. The receiver (1) obtains NR received symbol streams from NR receive antennas, (2) performs spatial processing on the received symbol streams with the spatial filter to obtain NS filtered symbol streams, (3) performs signal scaling on the filtered symbol streams with a scaling matrix to obtain NS recovered symbol streams, and (4) processes the NS recovered symbol streams to obtain NS decoded data streams for the NS data streams sent by the transmitter.
摘要:
A multiple-access MIMO WLAN system that employs MIMO, OFDM, and TDD. The system (1) uses a channel structure with a number of configurable transport channels, (2) supports multiple rates and transmission modes, which are configurable based on channel conditions and user terminal capabilities, (3) employs a pilot structure with several types of pilot (e.g., beacon, MIMO, steered reference, and carrier pilots) for different functions, (4) implements rate, timing, and power control loops for proper system operation, and (5) employs random access for system access by the user terminals, fast acknowledgment, and quick resource assignments. Calibration may be performed to account for differences in the frequency responses of transmit/receive chains at the access point and user terminals. The spatial processing may then be simplified by taking advantage of the reciprocal nature of the downlink and uplink and the calibration.
摘要:
A matrix {circumflex over (V)} of eigenvectors is derived using an iterative procedure. For the procedure, an eigenmode matrix Vi is first initialized, e.g., to an identity matrix. The eigenmode matrix Vi is then updated based on a channel response matrix Ĥ for a MIMO channel to obtain an updated eigenmode matrix Vi+1. The eigenmode matrix may be updated for a fixed or variable number of iterations. The columns of the updated eigenmode matrix may be orthogonalized periodically to improve performance and ensure stability of the iterative procedure. In one embodiment, after completion of all iterations, the updated eigenmode matrix for the last iteration is provided as the matrix {circumflex over (V)}.
摘要翻译:使用迭代过程导出特征向量的矩阵 V。 对于该过程,本征模式矩阵 V I i首先被初始化,例如,到单位矩阵。 然后,基于MIMO信道的信道响应矩阵 H更新本征模式矩阵 V i,以获得更新的本征模式矩阵 V i + 1 SUB>。 可以针对固定或可变数量的迭代更新本征模式矩阵。 更新的本征模式矩阵的列可以周期性地正交化以提高性能并确保迭代过程的稳定性。 在一个实施例中,在完成所有迭代之后,最后迭代的更新的本征模式矩阵被提供为矩阵 V。
摘要:
For data transmission with spatial spreading, a transmitting entity (1) encodes and modulates each data packet to obtain a corresponding data symbol block, (2) multiplexes data symbol blocks onto NS data symbol streams for transmission on NS transmission channels of a MIMO channel, (3) spatially spreads the NS data symbol streams with steering matrices, and (4) spatially processes NS spread symbol streams for full-CSI transmission on NS eigenmodes or partial-CSI transmission on NS spatial channels of the MIMO channel. A receiving entity (1) obtains NR received symbol streams via NR receive antennas, (2) performs receiver spatial processing for full-CSI or partial-CSI transmission to obtain NS detected symbol streams, (3) spatially despreads the NS detected symbol streams with the same steering matrices used by the transmitting entity to obtain NS recovered symbol streams, and (4) demodulates and decodes each recovered symbol block to obtain a corresponding decoded data packet.
摘要翻译:对于具有空间扩展的数据传输,发送实体(1)对每个数据分组进行编码和调制,以获得相应的数据符号块,(2)将数据符号块复用到N个S / S数据符号流上以便传输 (3)用导向矩阵空间扩展N S S个数据符号流,并且(4)空间地处理N S S个数据符号流, / SUB>扩展符号流,用于N信道本征模式上的全CSI传输或MIMO信道的N SUB空间信道上的部分CSI传输。 接收实体(1)通过N个N个接收天线获得接收到的N N个符号流,(2)执行用于全CSI或部分CSI传输的接收机空间处理,以获得 (3)使用发送实体使用的相同导向矩阵空间地解扩N N S S个检测到的符号流,以获得N N个S< S< S< (4)对每个恢复的符号块进行解调和解码以获得对应的解码数据分组。
摘要:
An uplink channel response matrix is obtained for each terminal and decomposed to obtain a steering vector used by the terminal to transmit on the uplink. An “effective” uplink channel response vector is formed for each terminal based on its steering vector and its channel response matrix. Multiple sets of terminals are evaluated based on their effective channel response vectors to determine the best set (e.g., with highest overall throughput) for uplink transmission. Each selected terminal performs spatial processing on its data symbol stream with its steering vector and transmits its spatially processed data symbol stream to an access point. The multiple selected terminals simultaneously transmit their data symbol streams via their respective MIMO channels to the access point. The access point performs receiver spatial processing on its received symbol streams in accordance with a receiver spatial processing technique to recover the data symbol streams transmitted by the selected terminals.
摘要:
Pilots suitable for use in MIMO systems and capable of supporting various functions are described. The various types of pilot include—a beacon pilot, a MIMO pilot, a steered reference or steered pilot, and a carrier pilot. The beacon pilot is transmitted from all transmit antennas and may be used for timing and frequency acquisition. The MIMO pilot is transmitted from all transmit antennas but is covered with different orthogonal codes assigned to the transmit antennas. The MIMO pilot may be used for channel estimation. The steered reference is transmitted on specific eigenmodes of a MIMO channel and is user terminal specific. The steered reference may be used for channel estimation. The carrier pilot may be transmitted on designated subbands/antennas and may be used for phase tracking of a carrier signal. Various pilot transmission schemes may be devised based on different combinations of these various types of pilot.
摘要:
Techniques for transmitting data using channel information for a subset of all subcarriers used for data transmission are described. A transmitter station receives channel information for at least one subcarrier that is a subset of multiple subcarriers used for data transmission. The channel information may include at least one transmit steering matrix, at least one set of eigenvectors, at least one channel response matrix, at least one channel covariance matrix, an unsteered pilot, or a steered pilot for the at least one subcarrier. The transmitter station obtains at least one transmit steering matrix for the at least one subcarrier from the channel information and determines a transmit steering matrix for each of the multiple subcarriers. The transmitter station performs transmit steering or beam-steering for each of the multiple subcarriers with the transmit steering matrix for that subcarrier.
摘要:
For data transmission with spatial spreading, a transmitting entity (1) encodes and modulates each data packet to obtain a corresponding data symbol block, (2) multiplexes data symbol blocks onto NS data symbol streams for transmission on NS transmission channels of a MIMO channel, (3) spatially spreads the NS data symbol streams with steering matrices, and (4) spatially processes NS spread symbol streams for full-CSI transmission on NS eigenmodes or partial-CSI transmission on NS spatial channels of the MIMO channel. A receiving entity (1) obtains NR received symbol streams via NR receive antennas, (2) performs receiver spatial processing for full-CSI or partial-CSI transmission to obtain NS detected symbol streams, (3) spatially despreads the NS detected symbol streams with the same steering matrices used by the transmitting entity to obtain NS recovered symbol streams, and (4) demodulates and decodes each recovered symbol block to obtain a corresponding decoded data packet.