Abstract:
An embodiment of a pressure control assembly for a wireline cable disposed in a wellbore comprises a housing frame, at least a pair of sealing devices disposed in the housing, the sealing devices defining an aperture for a cable to pass therethrough and a chamber therebetween, and a lubricant recirculation system for injecting and recirculating a lubricant into the chamber, the assembly operable to lubricate the cable and seal the cable, and maintain a predetermined pressure within the housing frame while the cable is disposed therein.
Abstract:
A cable assembly for use in a hydrocarbon well of extensive depth. The cable assembly may be effectively employed at well depths of over 30,000 feet. Indeed, embodiments of the assembly may be effectively employed at depths of over 50,000 feet while powering and directing downhole equipment at a downhole end thereof. The assembly may be made up of a comparatively high break strength uphole cable portion coupled to a lighter downhole cable portion. This configuration helps to ensure the structural integrity of the assembly in light of its own load when disposed in a well to such extensive depths. Additionally, the assembly may be employed at such depths with an intervening connector sub having a signal amplification mechanism incorporated therein to alleviate concern over telemetry between the surface of the oilfield and the downhole equipment.
Abstract:
A method for manufacturing a component includes a step of providing at least one metallic element. A surface of the at least one metallic element is modified to facilitate a bonding of the at least one metallic element to a polymeric layer. The polymeric layer is then bonded to the at least one metallic element to form the component.
Abstract:
A cable includes an electrically conductive cable core for transmitting electrical power and data, an insulative/protective layer circumferentially disposed around the core, an inner armor wire layer including a plurality of armor wires disposed around the cable core and the insulative layer, wherein at least one of the armor wires of the inner armor wire layer is bonded to the insulative layer, and an outer armor wire layer including a plurality of armor wires disposed around the inner armor wire layer. At least one of the armor wires of the outer armor wire layer can be bonded to the at least one of the armor wires of the inner armor wire layer.
Abstract:
A hydrocarbon application hose to avoid substantial compression and blow-out resulting from high pressurization differentials therethrough. The hose is formed from an inner tube that has a layer of material with electromagnetic target, such as carbon fiber, disbursed therethrough. In this manner, the material, generally a polymer, may be electromagnetically heated once the layer has been wrapped with a metallic reinforcing member. Thus, the layer of material may transform into surrounding relation relative to the reinforcing member. A substantially unitary inner tube may thereby be provided that includes a reinforcing member for blowout resistance and is of unitary character for compression resistance.
Abstract:
A technique utilizes micro-coil which is formed as a composite to enable use at substantial depths and/or with substantial flow rates. The micro-coil is formed as a tubing with a multi-layered tubing wall. The composite tubing wall provides substantial strength and longevity which allows deployment of the micro-coil in a much wider variety of well treatment applications, such as applications having substantial flow rates and/or applications at substantial well depths.
Abstract:
An electrical cable includes insulated primary conductors and at least one insulated secondary conductor, which extend along the cable. The primary conductors define interstitial spaces between adjacent primary conductors, and the primary conductors have approximately the same diameter. The primary conductors include power conductors and a telemetric conductor. The secondary conductor(s) each have a diameter that is smaller than each of the diameters of the primary conductors, and each secondary conductor is at least partially nested in one of the interstitial spaces. The electrical cable may include at least one fiber optic line.
Abstract:
An embodiment of a wellbore cable comprises a cable core, at least a first armor wire layer comprising a plurality of strength members and surrounding the cable core, and at least a second armor wire layer comprising a plurality of strength members surrounding the first armor wire layer, the second armor wire layer covering a predetermined percentage of the circumference of the first armor wire layer to prevent torque imbalance in the cable.
Abstract:
A cable and a method of making the cable includes an electrically conductive cable core for transmitting electrical power and at least one layer of a plurality of armor wires surrounding the cable core. At least one of the armor wires is a bimetallic armor wire having a coaxial inner portion and a surrounding outer portion. The inner and outer portions are formed of different metallic materials and the bimetallic armor wire provides a return path for the electrical power transmitted through the cable core.
Abstract:
A cable assembly for use in a hydrocarbon well of extensive depth. The cable assembly may be effectively employed at well depths of over 30,000 feet. Indeed, embodiments of the assembly may be effectively employed at depths of over 50,000 feet while powering and directing downhole equipment at a downhole end thereof The assembly may be made up of a comparatively high break strength uphole cable portion coupled to a lighter downhole cable portion. This configuration helps to ensure the structural integrity of the assembly in light of its own load when disposed in a well to such extensive depths. Additionally, the assembly may be employed at such depths with an intervening connector sub having a signal amplification mechanism incorporated therein to alleviate concern over telemetry between the surface of the oilfield and the downhole equipment.