摘要:
A flip-chip light emitting device and a method of manufacturing thereof are provided. The flip-chip nitride light emitting device includes a substrate, an n type clad layer, an active layer, a p type clad layer, a multi ohmic contact layer, and a reflective layer, which are stacked in this order, wherein the multi ohmic contact layer is obtained by repeatedly stacking at least one stack unit of a reforming metal layer and a transparent conductive thin film, and wherein the reforming metal layer mainly contains silver (Ag). According to the flip-chip light emitting device and the method of manufacturing thereof, since the ohmic contact characteristics associated with a p type clad layer can be improved, it is possible to increase wire bonding efficiency and yield in a packaging process. In addition, since a low non-contact resistance and a good current-voltage characteristic can be obtained, it is possible to improve light emitting efficiency and to expand life time of the flip-chip light emitting device.
摘要:
Disclosed herein is a technique for forming a high quality ohmic contact utilizable in the fabrication of short-wavelength light emitting diodes (LEDs) emitting blue and green visible light and ultraviolet light, and laser diodes (LDs) using a gallium nitride (GaN) semiconductor.The ohmic contact is formed by depositing a nickel (Ni)-based solid solution on top of a p-type gallium nitride semiconductor. The ohmic contact thus formed has an excellent current-voltage characteristic and a low specific contact resistance due to an increased effective carrier concentration around the surface of the gallium nitride layer, as well as a high transmittance in the short-wavelength region.
摘要:
Provided are a top-emitting N-based light emitting device and a method of manufacturing the same. The device includes a substrate, an n-type clad layer, an active layer, a p-type clad layer, and a multi ohmic contact layer, which are sequentially stacked. The multi ohmic contact layer includes one or more stacked structures, each including a modified metal layer and a transparent conductive thin film layer, which are repetitively stacked on the p-type clad layer. The modified metal layer is formed of an Ag-based material.
摘要:
A flip-chip light emitting device and a method of manufacturing thereof are provided. The flip-chip nitride light emitting device includes a substrate, an n type clad layer, an active layer, a p type clad layer, a multi ohmic contact layer, and a reflective layer, which are stacked in this order, wherein the multi ohmic contact layer is obtained by repeatedly stacking at least one stack unit of a reforming metal layer and a transparent conductive thin film, and wherein the reforming metal layer mainly contains silver (Ag). According to the flip-chip light emitting device and the method of manufacturing thereof, since the ohmic contact characteristics associated with a p type clad layer can be improved, it is possible to increase wire bonding efficiency and yield in a packaging process. In addition, since a low non-contact resistance and a good current-voltage characteristic can be obtained, it is possible to improve light emitting efficiency and to expand life time of the flip-chip light emitting device.
摘要:
Provided are a nitride-based light-emitting device including a transparent electrode made of a transparent conductive oxide having a higher work function than indium tin oxide and a method of manufacturing the same. The nitride-based light-emitting device has a sequentially stacked structure of a substrate, an n-type clad layer, an active layer, a p-type clad layer, and an ohmic contact layer. The ohmic contact layer is formed as a film made of a transparent conductive oxide having a higher work function than indium tin oxide or as a film made of the transparent conductive oxide doped with a metal dopant. Therefore, ohmic contact characteristics with the p-type clad layer are enhanced, thereby ensuring excellent current-voltage characteristics. Furthermore, the high light transmittance of the transparent electrode can increase the emission efficiency of the device.
摘要:
Provided are a top-emitting N-based light emitting device and a method of manufacturing the same. The device includes a substrate, an n-type clad layer, an active layer, a p-type clad layer, and a multi ohmic contact layer, which are sequentially stacked. The multi ohmic contact layer includes one or more stacked structures, each including a modified metal layer and a transparent conductive thin film layer, which are repetitively stacked on the p-type clad layer. The modified metal layer is formed of an Ag-based material.
摘要:
A flip-chip light emitting device and a method of manufacturing thereof are provided. The flip-chip nitride light emitting device includes a substrate, an n type clad layer, an active layer, a p type clad layer, a multi ohmic contact layer, and a reflective layer, which are stacked in this order, wherein the multi ohmic contact layer is obtained by repeatedly stacking at least one stack unit of a reforming metal layer and a transparent conductive thin film, and wherein the reforming metal layer mainly contains silver (Ag). According to the flip-chip light emitting device and the method of manufacturing thereof, since the ohmic contact characteristics associated with a p type clad layer can be improved, it is possible to increase wire bonding efficiency and yield in a packaging process. In addition, since a low non-contact resistance and a good current-voltage characteristic can be obtained, it is possible to improve light emitting efficiency and to expand life time of the flip-chip light emitting device.
摘要:
Provided are an electrode layer, a light emitting device including the electrode layer, and a method of forming the electrode layer. The electrode layer includes a first electrode layer and a second electrode layer, which are sequentially stacked, and the first electrode layer is formed of indium oxide added by an additive element. Also, the additive element includes at least one selected from the group consisting of Mg, Ag, Zn, Sc, Hf, Zr, Te, Se, Ta, W, Nb, Cu, Si, Ni, Co, Mo, Cr, Mn, Hg, Pr, and La.
摘要:
Provided are a nitride-based light-emitting device including a transparent electrode made of a transparent conductive oxide having a higher work function than indium tin oxide and a method of manufacturing the same. The nitride-based light-emitting device has a sequentially stacked structure of a substrate, an n-type clad layer, an active layer, a p-type clad layer, and an ohmic contact layer. The ohmic contact layer is formed as a film made of a transparent conductive oxide having a higher work function than indium tin oxide or as a film made of the transparent conductive oxide doped with a metal dopant. Therefore, ohmic contact characteristics with the p-type clad layer are enhanced, thereby ensuring excellent current-voltage characteristics. Furthermore, the high light transmittance of the transparent electrode can increase the emission efficiency of the device.
摘要:
Provided are a multiple reflection layer electrode, a compound semiconductor light emitting device having the same and methods of fabricating the same. The multiple reflection layer electrode may include a reflection layer on a p-type semiconductor layer, an APL (agglomeration protecting layer) on the reflection layer so as to prevent or retard agglomeration of the reflection layer, and a diffusion barrier between the reflection layer and the APL so as to retard diffusion of the APL.