摘要:
A transmission system includes transmit and receive paths coupled via a hybrid circuit to a bidirectional transmission path. The transmit path includes a digital-to-analog converter (DAC) having a given range and precision. The transmit path signal is limited and truncated to this range and precision before the DAC. In one arrangement including an echo canceller coupled between the transmit and receive paths, a difference of the transmit path signal before and after limiting and truncation is used to produce an estimated echo response which is subtracted from the receive path signal. In another arrangement, all of the inputs to the echo canceller are derived from the transmit path after the limiting and truncation. Instead, or in addition, the amplitudes of transmit path signal samples can be shaped in conjunction with the limiting. The system can in particular be an ADSL transmission system using multicarrier modulation. In such a system the amplitudes of transmit path signal samples can be scaled to reduce clipping, with an indication of the scaling being transmitted to a remote receiver.
摘要:
A method and apparatus for adaptive, variable bandwidth, high-speed data transmission of a multicarrier signal over digital subscriber lines wherein the initial optimal transmission bandwidth is identified based on initial signal-to-noise ratio (SNR) estimates of the orthogonal carriers of the multicarrier system. Maximum data throughput, or system performance margin, is achieved by assigning the total amount of information, or number of bits, to be transmitted in each multicarrier symbol to particular carriers through an initial bit allocation procedure, which is possibly subject to variable target bit error rates among the carriers. A transmit power mask, of any shape and level, is imposed upon the system by an initial energy allocation procedure that limits the maximum amount of power to be transmitted in each of the several carriers. Lastly, run-time adaptivity is achieved by monitoring the mean-squared-errors (MSE) of the orthogonal carriers, and the transmission bandwidth, as well as the bit allocation within the multicarrier symbol, is caused to change in real-time corresponding to changes in the channel characteristics in order to maintain optimal system performance.
摘要:
Control of a digital communication system having a plurality of communication lines on which signals are transmitted and received is implemented using a variety of methods and systems. According to one embodiment of the present invention, a method is implemented where the signals are affected by interference during transmission and each of the communication lines has at least one transmitter and at least one receiver. A model is created of the interference characteristics due to the signals carried on the communication lines. Interference characteristics for a line are determined based on the model and actual signals carried on other communication lines different from the line for which the characteristics are being determined. Actual interference is compensated for on the communication line using the determined interference characteristics.
摘要:
A method and apparatus in a noise cancellation system that receives a noise reference signal via a noise reference signal input port, and performs at least one of procedures a and b set forth below for reducing noise in a DSL data signal transmitted on a DSL transmission line to which the noise cancellation system is coupled: a.i.) creating a noise free representation of a DSL synchronization symbol repeatedly occurring in the transmitted DSL data signal, and a.ii.) reducing the noise in the transmitted DSL data signal based on the noise free representation of the DSL synchronization symbol and the received noise reference signal, and b.i.) analyzing at least one of the received noise reference signal and the transmitted DSL data signal to identify one or more frequency bands in which to de-emphasize noise cancellation in the transmitted DSL data signal, and b.ii.) causing the noise cancellation system to de-emphasize noise cancellation in the identified one or more frequency bands of the transmitted DSL data signal, responsive to the analysis.
摘要:
According to example embodiments for use in a communication system that is adapted to permit the users to transmit data simultaneously via shared frequency and spatial resources, an allocation of user transmission rates involves setting and maintaining the transmission rates of the users to at least a minimum user transmission rate to provide an expected minimum quality of communication for each of the users. These rates of the users are incrementally adjusted by iteratively changing the transmission rate of each user as a function of a resulting vector of transmit powers ensuing from the increased transmission rate, a degree of transmission-rate-allocation unfairness relative to the transmission rates of all the users, and a power-based selection criteria. With such an approach, the rates are fairly allocated without a disproportionate allocation of system bandwidth. Various embodiments are applicable to a variety of communication applications including OFDM or CDMA communication systems.
摘要:
Loading and ordering techniques are provided for one-sided and two-sided vectored line groups, as well as loading methodologies that also can be used on a single line, in communication systems such as Digital Subscriber Line (DSL) binders. In particular, a method for loading bits into a plurality of lines in a vectored DSL system using Discrete MultiTone (DMT) modulation is disclosed. The method iteratively determines two or more of the following sequentially: line ordering for each tone; power spectral density for the transmitted signal of each line; and bit allocation for the signal of each line. In some embodiments, line ordering may include order-swapping which may assign a first line to a first initial position, assign a second line to a second initial position, move the first line to the second initial position, and move the second line to the first initial position.
摘要:
Estimates of a communication system configuration, such as a DSL system, are based on operational data collected from a network element management system, protocol, users and/or the like. The operational data collected from the system can include performance-characterizing operational data that typically is available in an ADSL system via element-management-system protocols. Scanning, wherein a number of line profiles are used in connection with DSL loops having known configurations, can be used to generate a database or library of loop configuration information. One or more of the line profiles can be used with an unknown DSL loop to generate operational data from the unknown DSL loop that is compared to the loop configuration information in the database, allowing identification of loop configuration information pertaining to the unknown DSL loop. The unknown DSL loop operational data also can be used to determine whether one or more bad splices are present on the unknown DSL loop and, in some cases, the approximate or exact bad splice(s) location(s).
摘要:
Data indicative of a level of stability of a DSL link is received. Based on the received data, it is determined whether the data indicates a level of stability of the DSL link that is above or below a minimum threshold. If the level of stability of the DSL link is below the minimum threshold, die noise associated with the DSL link before the time of failure is compared with the noise associated with the DSL link after the time of failure. If the difference between the noise before and after the time of failure exceeds a threshold, then the difference in noise is characterized as a stationary noise associated with the DSL link. However, if the difference between the noise before and after the time of failure is below the threshold, a determination is made whether the failure is associated with a loss of power to the DSL link or a severe impulse noise event—the difference in noise is characterized accordingly. Finally, the characterization of the noise associated with the DSL link is preserved for subsequent possible reconfiguration of the DSL link to improve link stability.
摘要:
A DSL system includes a multiple loop segment where K loops are bonded to provide a multiple loop segment having up to (2K−1) communication channels on which transmissions are vectored. The segment may be a drop to a customer premises, an inter-pedestal link, or any other suitable part of a larger DSL system. Generally the bonded loops are relatively short, being 300 meters or less. Signal vectoring is used to increase the speed and data carrying capability of the channels. In some embodiments, an expanded frequency spectrum also can be used to increase the data carrying capability of one or more of the channels. An impedance matching circuit may be coupled to each end of the segment to provided efficient transmission of data across the segment. A controller may provide control signals used to operate the segment as a vectored system and, if desired, frequency bandwidth control signals. The controller may monitor and/or collect data and information from the DSL system to assist in generating control signals. The controller can be a dynamic spectrum manager or DSM Center that includes a computer system and/or other hardware to assist in performing the required functions.
摘要:
A DSL or other communication system includes a modem or other communication device having at least one antenna that is configured to collect interference data relating to interference noise affecting communication signals being received by the communication device. The interference may include RF interference, such as AM radio interference, crosstalk and other types of interference from various sources. The interference data collected by the antenna is used by an interference canceller to remove and/or cancel some or all of the interference affecting received signals. In some embodiments of the present invention, more than one antenna may be used, wherein each antenna can collect interference data pertaining to a single source of interference noise. Where a modem or other communication device is coupled to multiple telephone lines, only one of which is being used as the active DSL line, wires in the remaining telephone lines or loops can be used as antennas. Moreover, the antenna may be an antenna, per se, such as a compact AM radio antenna or any other suitable structure or device for collecting the type(s) of interference affecting signals received by the communication device.