Abstract:
A fuel synthesis catalyst of an embodiment for hydrogenating a gas includes at least one selected from the group consisting of; carbon dioxide and carbon monoxide, the catalyst comprising, an oxide base material containing at least one oxide selected from the group consisting of; Al2O3, MgO, TiO2, and SiO2, first metal particles containing at least one metal selected from the group consisting of; Ni, Co, Fe, and Cu and brought into contact with the oxide base material, and a porous oxide layer containing at least one selected from the group consisting of; CeO2, ZrO2, TiO2, and SiO2 and having an interface with each of the first metal particles and the oxide base material.
Abstract:
A nonaqueous electrolyte secondary battery of the present invention includes a positive electrode containing olivine-structured Fe or a Mn-containing phosphorus compound as a positive electrode active material; a negative electrode containing a titanium-containing metal oxide capable of inserting and extracting lithium ions as a negative electrode active material; a nonwoven fabric separator, which contains an electrically insulating fiber and is bonded to a surface of at least one of the positive electrode and the negative electrode; and a nonaqueous electrolyte. In a thickness direction of the nonwoven fabric separator, a density of the fiber on a side having contact with the positive electrode is high, and a density of the fiber on a side having contact with the negative electrode is low.
Abstract:
A nonaqueous electrolyte battery includes a positive electrode, a negative electrode and a nonaqueous electrolyte. At least one of the positive electrode and the negative electrode comprises a current collector made of aluminum or an aluminum alloy and an active material layer laminated on the current collector. The active material layer contains first active material particles having an average particle diameter of 1 μm or less and a lithium diffusion coefficient of 1×10−9 cm2/sec or less at 20° C., and second active material particles having an average particle diameter of 2 to 50 μm. A true density of the second active material particles is larger by 0.01 to 2.5 g/cm3 than a true density of the first active material particles.
Abstract translation:非水电解质电池包括正极,负极和非水电解质。 正极和负极中的至少一个包括由铝或铝合金制成的集电体和层叠在集电体上的活性物质层。 活性物质层包含平均粒径为1μm以下的第一活性物质粒子,在20℃下的锂扩散系数为1×10-9 cm 2 / sec以下,第二活性物质粒子的平均粒子 直径为2〜50μm。 第二活性物质粒子的真密度比第一活性物质粒子的真实密度大0.01〜2.5g / cm 3。
Abstract:
A nonaqueous electrolyte battery includes a positive electrode, a negative electrode and a nonaqueous electrolyte. At least one of the positive electrode and the negative electrode comprises a current collector made of aluminum or an aluminum alloy and an active material layer laminated on the current collector. The active material layer contains first active material particles having an average particle diameter of 1 μm or less and a lithium diffusion coefficient of 1×10−9 cm2/sec or less at 20° C., and second active material particles having an average particle diameter of 2 to 50 μm. A true density of the second active material particles is larger by 0.01 to 2.5 g/cm3 than a true density of the first active material particles.
Abstract translation:非水电解质电池包括正极,负极和非水电解质。 正极和负极中的至少一个包括由铝或铝合金制成的集电体和层叠在集电体上的活性物质层。 活性物质层在20℃下含有平均粒径为1μm以下的锂扩散系数为1×10-9 cm 2 / sec以下的第1活性物质粒子,平均粒子的第2活性物质粒子为 直径2〜50um。 第二活性物质粒子的真密度比第一活性物质粒子的真实密度大0.01〜2.5g / cm 3。
Abstract:
In general, according to one embodiment, a secondary battery includes a positive electrode, a negative electrode, an aqueous electrolyte, and a gas treatment structure. The gas treatment structure is configured to be capable of treating hydrogen gas using an electrical conduction between the gas treatment structure and the positive electrode.
Abstract:
According to one embodiment, provided is a secondary battery including a negative electrode, a positive electrode, a first composite layer joined to the negative electrode, a second composite layer joined to the positive electrode, and an aqueous electrolyte. The first composite layer includes a first principal surface on a reverse side with respect to a surface joined to the negative electrode. The second composite layer includes a second principal surface on a reverse side with respect to a surface joined to the positive electrode and facing the first principal surface. Each of the first composite layer and the second composite layer contains inorganic solid particles and a polymeric material. A peel strength σs between the first principal surface and second principal surface is 0.1 N/mm or less. The aqueous electrolyte includes water.
Abstract:
According to one embodiment, an electrode is provided. The electrode includes a current collector and an active material-containing layer formed on the current collector and containing active material particles. A median diameter (D50) calculated from a volume-based frequency distribution chart obtained by a laser diffraction/scattering method for the active material particles is in the range of 1.2 μm to 4.0 μm. In the frequency distribution chart, a proportion of an integrated amount of particles having a particle size of 2.0 μm or less is in the range of 36% to 62% with respect to the entire active material particles on a volume basis.
Abstract:
According to an embodiment, an electrode group is provided. The electrode group includes a positive electrode, and a negative electrode. The negative electrode active material-containing layer includes a facing section which faces the positive electrode active material-containing layer and a non-facing section which does not. A first fluorine-containing coating is formed on a main surface of the negative electrode active material-containing layer in at least a part of the non-facing section. The abundance ratio of fluorine atoms included in the first fluorine-containing coating is in the range of 2.5 atom % to 10 atom %.
Abstract:
According to one embodiment, an electrode includes a current collector and an active material layer. The active material layer is disposed on at least one of faces of the current collector. The active material layer comprises active materials which include at least a cobalt-containing oxide and a lithium nickel manganese oxide. A ratio of a weight of the cobalt-containing oxide to a total of weights of the cobalt-containing oxide and the lithium nickel manganese oxide is 5 wt % or more and 40 wt % or less.
Abstract:
According to one embodiment, a secondary battery includes a positive electrode, a negative electrode and an aqueous electrolyte. The negative electrode includes a titanium-containing oxide. The aqueous electrolyte includes a sodium ion having a concentration of 3 mol/L or more and at least one type of first anion selected from the group consisting of [N(FSO2)2]−, SO32−, S2O32− and SCN−.