Abstract:
The present invention relates to an electrode assembly. The electrode assembly comprises: a first separator sheet; and a first electrode sheet and a second electrode sheet, which respectively adhere to both surfaces of the first separator sheet, wherein patterned masks having different adhesion force are respectivley disposed on both the surfaces of the first separator sheet, and the first electrode sheet adheres to the mask of a first surface of both the surfaces, which has relatively high adhesion force, and the second electrode sheet adheres to the mask of a second surface having relatively low adhesion force.
Abstract:
Disclosed are a pouch-shaped battery case including an upper case and a lower case sealed to one another, the upper case and the lower case made of a laminate sheet comprising a metal layer and a resin layer, at least one of the upper case and the lower case having a concave unit for receiving an electrode assembly, the upper case and the lower case being sealed at all corners thereof located along the outer edge of the concave unit, a middle of a first side surface of each of the upper case and the lower case having a non-sealed portion for gas discharge, the first side surface being adjacent to a second side surface of each of the upper case and the lower case through which an electrode terminal extends, a method of manufacturing the pouch-shaped battery case, and a sealing block for manufacturing the pouch-shaped battery case.
Abstract:
The present invention relates to an apparatus and method for manufacturing an electrode assembly. The method for manufacturing the electrode assembly comprises a melting induction process of inducing melting on an outer surface of a separator by a melting induction solvent to increase an adhesion force of an interface between an electrode and the separator and a lamination process of alternately combining and laminating the electrode and the separator, wherein the melting induction process comprises a vaporization process of vaporizing the melting induction solvent to form a space that is humidified by vapor, and the electrode and the separator are disposed in the space that is humidified by the vapor to induce the uniform melting on the outer surface of the separator.
Abstract:
A sealing block for sealing a pouch-shaped secondary battery includes a main body unit for sealing at least a part of an outer edge of a battery case from which an electrode terminal protrudes by applying heat and/or pressure thereto and a wrinkle prevention unit coupled perpendicularly to one surface of the main body unit, the wrinkle prevention unit including a curved structure that corresponds to a rounded corner of an electrode assembly reception unit of the battery case, wherein the wrinkle prevention unit further includes an extension portion for connecting the curved structure of the wrinkle prevention unit to the main body unit. Sealing may be performed when the wrinkle prevention unit is adjacent to the electrode assembly reception unit via the extension portion.
Abstract:
The present invention relates to an electrode, for reducing a difference in ductility between a non-coating portion and a coating portion of the electrode, a method for manufacturing the electrode, and a roller for manufacturing the electrode. Also, the electrode according to the present invention includes an electrode foil, a coating portion coated with an electrode active material on one surface of the electrode foil, and a non-coating portion which is disposed adjacent to the coating portion on the one surface of the electrode foil, and is not coated with the electrode active material and on which a pattern is disposed.
Abstract:
The present invention relates to an electrode comprising multi-layered electrode active material layer and a secondary battery comprising the same. According to the embodiments of the present invention comprises electrode having multi-layered electrode active material layer, wherein the content of the active materials which forms the electrode active material layers is equally maintained and the loading amounts at each layer are either the same or different from each other, thereby solving the problem of performance deterioration caused by an increase in battery resistance due to non-uniform dispersion of a binder or the like.
Abstract:
The present invention relates to an electrode assembly including a separator and a lithium secondary battery including the same for improving safety. The electrode assembly including a positive electrode, a negative electrode and a separator further includes a gasification material possibly being electrolyzed at a certain voltage to generate a gas. Since the electrode assembly and the lithium secondary battery including the same include the gasification material possibly being electrolyzed at the certain voltage to generate the gas, the safety of the battery may be increased. Since the gasification material is coated on the surface of the separator not on the electrode, the resistance increase of the battery may be restrained and the capacity lowering of the battery may be remarkably decreased. The lifetime of the battery is good.
Abstract:
The present invention relates to swelling tape for filling a gap and its use. The swelling tape is, for example, applied between gaps in which a fluid is present, thereby being deformed into a three-dimensional shape to fill the gap and fix an object separated by gaps as needed.
Abstract:
Disclosed are a non-aqueous electrolyte comprising a lithium salt and a solvent, the electrolyte containing, based on the weight of the electrolyt, 10-40 wt % of a compound of Formula 1 or its decomposition product, and 1-40 wt % of an aliphatic nitrile compound, as well as an electrochemical device comprising the non-aqueous electrolyte.
Abstract:
The present invention relates to an electrode comprising multi-layered electrode active material layer and a secondary battery comprising the same. According to the embodiments of the present invention comprises electrode having multi-layered electrode active material layer, wherein the content of the active materials which forms the electrode active material layers is equally maintained and the loading amounts at each layer are either the same or different from each other, thereby solving the problem of performance deterioration caused by an increase in battery resistance due to non-uniform dispersion of a binder or the like.