Abstract:
A base station of the present invention configures resources in which a downlink signal is to be transmitted with zero power using resource sets defined for a specific number of antenna ports, regardless of the number of antenna ports actually configured in the base station, and transmits resource information indicating the configured resources to a user equipment. The user equipment of the present invention receives a downlink transmission from the base station, assuming that transmission power of resources corresponding to a resource set indicated by the resource information is zero.
Abstract:
Disclosed are a terminal device for controlling uplink signal transmission power, and a method therefore. The present invention relates to a method and terminal device for controlling uplink transmission power, wherein the method, in which a terminal that communicates with cells of each timing alignment (TA) group controls uplink transmission power in the event a plurality of TA groups including one or more cells exists in a wireless communication system, comprises: a step of determining the uplink transmission power for at least one channel in the event at least two channels from among a physical uplink control channel (PUCCH), a physical uplink shared channel (PUSCH) including a plurality of pieces of uplink control information (UCI), a PUSCH including no UCI, a physical random access channel (PRACH), and a sounding reference signal (SRS) are simultaneously transmitted in the same subframe in each specific cell of the plurality of TA groups; and a step of transmitting said at least one channel with the determined uplink transmission power, wherein said uplink transmission power is determined in consideration of a TA group index.
Abstract:
A method is provided for transmitting Acknowledgement/Negative Acknowledgement (ACK/NACK) information in a wireless communication system. The method is performed by a User Equipment (UE) configured to use a Physical Uplink Control Channel (PUCCH) format 3. The UE determines a PUCCH format and a PUCCH resource through which ACK/NACK information for downlink transmission in a downlink subframe set including M downlink subframes is to be transmitted, wherein M>1. The UE transmits the ACK/NACK information using the PUCCH format and the PUCCH resource in one uplink subframe. A plurality of serving cells are configured for the UE and include one Primary Cell (PCell) and at least one Secondary Cell (SCell).
Abstract:
The present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting uplink control information in a wireless communication system. A method for multiplexing uplink control information and uplink data and for transmitting the multiplexed uplink control information and uplink data according to one embodiment of the present invention comprises the following steps: encoding a first transmission block and a second transmission block to generate a first codeword and a second codeword; mapping the first codeword and the second codeword to one or more layers, respectively; and transmitting, via one or more antenna ports, each layer to which the first codeword and the second codeword are mapped, wherein the uplink control information is multiplexed only to either the first transmission block or to the second transmission block.
Abstract:
A method for transmitting, by a user equipment, uplink control information, and a user equipment therefore are discussed. The method according to one embodiment includes determining respective first acknowledgement, negative acknowledgement or discontinuous transmission (ACK/NACK/DTX) responses for four downlink (DL) subframes of a first carrier and respective second ACK/NACK/DTX responses for four DL subframes of a second carrier; and transmitting ACK/NACK information representing the first and second ACK/NACK/DTX responses through the first or second carrier in an uplink (UL) subframe. For a same sequence of the first ACK/NACK/DTX responses for the four DL subframes of the first carrier, a same ACK/NACK information is transmitted when a sequence of the second ACK/NACK/DTX responses for the DL subframes of the second carrier is ‘ACK, ACK, ACK, ACK’ and when the sequence of the second ACK/NACK/DTX responses for the DL subframes of the second carrier is ‘ACK, DTX, DTX, DTX’.
Abstract:
A method for transmitting control information using PUCCH format 3 in a radio communication system includes detecting one or more Physical Downlink Control Channels (PDCCHs), receiving one or more Physical Downlink Shared Channel (PDSCH) signals corresponding to the one or more PDCCHs, and determining a PUCCH resource value nPUCCH(3,p) corresponding to a value of a transmit power control (TPC) field of a PDCCH for a PDSCH signal on a secondary cell (SCell) among a plurality of PUCCH resource values configured by a higher layer for the PUCCH format 3. If a single antenna port transmission mode is configured, the PUCCH resource value nPUCCH(3,p) indicated by the TPC field is mapped to one PUCCH resource for a single antenna port, and, if a multi-antenna port transmission mode is configured, the PUCCH resource value nPUCCH(3,p) indicated by the TPC field is mapped to a plurality of PUCCH resources for multiple antenna ports.
Abstract:
Disclosed are a method for setting an operating channel in a white space band and a device therefor. Particularly, a method for enabling a first device to set an operating channel in a white space band comprises the steps of: acquiring information on an available TV channel from a geo-location database; and setting an operating channel on the basis of the information on the available TV channel, wherein a center frequency of the operating channel can be set differently according to a TV channel used by an incumbent device among TV channels adjacent to the TV channel on which the operating channel is set.
Abstract:
A method of transmitting uplink control information (UCI) in a wireless access system supporting carrier aggregation. A user equipment (UE) receives two or more physical downlink shared channels (PDSCHs) via two or more downlink component carriers, respectively. The UE performs channel coding with respect to the UCI according to a payload size of the UCI including acknowledgement information and channel quality information (CQI) for each of the two or more downlink carriers. The UE performs rate matching with respect to the channel coded UCI for a physical uplink control channel (PUCCH) format 3. The UE transmits the rate matched UCI using the PUCCH format 3.
Abstract:
A method for acquiring control information in a wireless communication system according to one embodiment of the present invention includes the steps of: receiving E-PDCCH (Enhanced-Physical Downlink Control Channel) configuration information from a base station (BS); and transmitting a confirmation response for the E-PDCCH configuration information. The terminal performs blind decoding for downlink control information in a common search space on a PDCCH (Physical Downlink Control Channel) resource region and a search space on the E-PDCCH during a predetermined period after transmitting the confirmation response.
Abstract:
The present invention relates to a wireless communication system and more specifically relates to a method and device for transmitting information. A wireless communication system can support carrier aggregation (CA). In one aspect of the present invention, a method, in which a terminal receives information from a base station in a wireless communication, comprises the steps of: receiving, from the base station, first information on the transmission method of a first channel; receiving the receiving the first channel, from the base station, via at least one serving cell formed in the terminal; and carrying out decoding on the first channel in accordance with the first information. Therein, the first channel is an enhanced physical downlink control channel (ePDCCH), and the terminal is capable of not carrying out decoding on the first channel in a frequency region in a present subframe.