Abstract:
A digital broadcasting system and method of processing data are disclosed. Herein, a method of processing data in a transmitting system includes creating a data group including a plurality of mobile service data packets, re-adjusting a relative position of at least one main service data packet of a main service data section, the main service data section including a plurality of main service data packets, and multiplexing the mobile service data of the data group and the main service data of the main service data section in burst units. Herein, a position of an audio data packet among the main service data packets of the main service data section may be re-adjusted. Also, a position of an audio data packet included in the main service data section may be re-adjusted based upon a multiplexing position of the main service data section.
Abstract:
A digital broadcasting system and a method of processing data are disclosed, which are robust to error when mobile service data are transmitted. To this end, additional encoding is performed for the mobile service data, whereby it is possible to strongly cope with fast channel change while giving robustness to the mobile service data.
Abstract:
A method is provided for processing broadcast data in a broadcast transmitter. Broadcast service data is randomized. The randomized broadcast service data is first-encoded to add parity data to the randomized broadcast service data. The first-encoded broadcast service data is second-encoded. The second-encoded broadcast service data is first interleaved. The first-interleaved broadcast service data is second-interleaved. Signaling data is encoded for signaling the broadcast service data. The encoded signaling data is third-interleaved. The third-interleaved signaling data is fourth interleaved. A frame is transmitted that is divided into a data region including the second-interleaved broadcast service data, a first signaling region including the fourth-interleaved signaling data and a second signaling region that includes at least one symbol that is used for synchronization and channel estimation. The frame includes known data. The encoded signaling data includes information for identifying the code rate and information related to the known data.
Abstract:
The present invention is directed to a digital broadcast system and a data processing method. A broadcast signal in which mobile service data and main service data are multiplexed is transmitted and received. Then, in a broadcasting receiver, the program table information including information about a service or a program of an ensemble is parsed according to an identifier of the ensemble in which the mobile service data are multiplexed, in the received broadcast signal. And a mobile service is outputted by using the mobile service data and the parsed program table information.
Abstract:
A DTV transmitting system includes an encoder, a randomizer, a block processor, a group formatter, a deinterleaver, and a packet formatter. The encoder codes enhanced data for error correction, permutes the coded data, and further codes the permuted data for error detection. The randomizer randomizes the coded enhanced data, and the block processor codes the randomized data at an effective coding rate of 1/H. The group formatter forms a group of enhanced data having data regions, and inserts the coded enhanced data into at least one of the data regions. The deinterleaver deinterleaves the group of enhanced data, and the packet formatter formats the deinterleaved data into corresponding data bytes.
Abstract:
A method of transmitting a broadcast signal includes performing Reed-Solomon (RS) frame encoding and Cyclic Redundancy Check (CRC) encoding on first mobile service data to form a primary RS frame and on second mobile service data to form a secondary RS frame; encoding on at least the first mobile service data or the second mobile service data, in serial concatenated convolution code (SCCC) block units; encoding signaling information including transmission parameters, the transmission parameters including SCCC encoding information and RS frame encoding information; formatting a data group including the encoded first mobile service data and second mobile service data, wherein the first mobile service data are included in a first region within the data group and the second mobile service data are included in a second region within the data group, the second region being different from the first region; and transmitting the broadcast signal including the formatted data group.
Abstract:
A method is described for transmitting broadcast signals. First encoding of first broadcast service data is performed. Second encoding of the first encoded first broadcast service data is performed. The broadcast signals having the second encoded first broadcast service data multiplexed with second broadcast service data are transmitted. Each of the second encoded first broadcast service data and the second broadcast service data is allocated in a different data unit. The second encoded first broadcast service data and the second broadcast service data are allocated in different data units, respectively. Different robustness are allocated to the first broadcast service data and the second broadcast service data.
Abstract:
A DTV transmitting system includes an encoder, a randomizer, a block processor, a group formatter, a deinterleaver, and a packet formatter. The encoder codes enhanced data for error correction, permutes the coded data, and further codes the permuted data for error detection. The randomizer randomizes the coded enhanced data, and the block processor codes the randomized data at an effective coding rate of 1/H. The group formatter forms a group of enhanced data having data regions, and inserts the coded enhanced data into at least one of the data regions. The deinterleaver deinterleaves the group of enhanced data, and the packet formatter formats the deinterleaved data into corresponding data bytes.
Abstract:
A television transmitting system includes an encoder, a data randomizing and expanding unit, a group formatter, a deinterleaver, and a packet formatter. The encoder codes enhanced data for error correction, permutes the coded data, and further codes the permuted data for error detection. The randomizing and expanding unit randomizes the error-detection-coded data and expands the randomized data. The group formatter forms a group of enhanced data having one or more data regions and inserts the expanded enhanced data into at least one of the regions. The deinterleaver deinterleaves the group of enhanced data, and the packet formatter generates enhanced data packets.
Abstract:
A broadcast receiving system capable of receiving mobile broadcast data and a method for processing broadcast signals are disclosed. The broadcast receiving system includes a first receiving unit, a second receiving unit, a known sequence detector, a equalizer, and a display unit. The first receiving unit receives a first broadcast signal including first mobile broadcast service data and first main broadcast service data. The second receiving unit receives a second broadcast signal including second mobile broadcast service data and second main broadcast service data. The known sequence detector detects at least one of known data included in the received first broadcast signal and known data included in the received second broadcast signal. The channel equalizer uses the detected known data, thereby channel-equalizing the received first and second mobile broadcast service data corresponding to the detected known data. The display unit provides any one of first video data and second video data included in the channel-equalized first and second mobile broadcast service data to a user.