Abstract:
Methods for protecting data on an integrated circuit including a memory are described. One method includes storing protection codes on the integrated circuit. Each protection code has a first value indicating a protected state and a second value indicating an unprotected state for a corresponding sector in a plurality of sectors of the memory. The method includes storing protection mask codes on the integrated circuit. Each mask code has a first value indicating a masked state or a second value indicating an unmasked state for a corresponding sector in the plurality of sectors. The method includes blocking modification in a particular sector of the memory using circuitry on the integrated circuit when the protection code for the particular sector has the first value and the mask code for the particular sector has the second value, else allowing modification in the particular sector.
Abstract:
A memory device includes a plurality of sense amplifiers coupled with an array of memory cells, a plurality of output data lines receiving outputs of corresponding sense amplifiers, and a plurality of precharge circuits configured to apply a precharge voltage on the output data lines. A controller provides control signals to the sense amplifiers and to the precharge circuits, including to cause the precharge circuits to precharge the output data lines before the sense amplifiers drive output data signals to the output data lines. The plurality of sense amplifiers includes banks of sense amplifiers, and each bank includes a sense amplifier having an output driving each output data line. The memory device includes data output multiplexers having inputs coupled to the output data lines, and the precharge circuits are coupled to the output data lines between outputs of the sense amplifiers and the data output multiplexers.
Abstract:
A programming method, a reading method and an operating system for a memory are provided. The programming method includes the following steps. A data is provided. A parity generation is performed to obtain an error-correcting code (ECC). The memory is programmed to record the data and the error-correcting code. The data is transformed before performing the parity generation, such that a hamming distance between two codes corresponding to two adjacent threshold voltage states in the data to be performed the parity generation is 1.
Abstract:
A memory device includes a plurality of sense amplifiers coupled with an array of memory cells, a plurality of output data lines receiving outputs of corresponding sense amplifiers, and a plurality of precharge circuits configured to apply a precharge voltage on the output data lines. A controller provides control signals to the sense amplifiers and to the precharge circuits, including to cause the precharge circuits to precharge the output data lines before the sense amplifiers drive output data signals to the output data lines. The plurality of sense amplifiers includes banks of sense amplifiers, and each bank includes a sense amplifier having an output driving each output data line. The memory device includes data output multiplexers having inputs coupled to the output data lines, and the precharge circuits are coupled to the output data lines between outputs of the sense amplifiers and the data output multiplexers.
Abstract:
A memory device includes a plurality of sense amplifiers coupled with an array of memory cells, a plurality of output data lines receiving outputs of corresponding sense amplifiers, and a plurality of precharge circuits configured to apply a precharge voltage on the output data lines. A controller provides control signals to the sense amplifiers and to the precharge circuits, including to cause the precharge circuits to precharge the output data lines before the sense amplifiers drive output data signals to the output data lines. The plurality of sense amplifiers includes banks of sense amplifiers, and each bank includes a sense amplifier having an output driving each output data line. The memory device includes data output multiplexers having inputs coupled to the output data lines, and the precharge circuits are coupled to the output data lines between outputs of the sense amplifiers and the data output multiplexers.
Abstract:
A memory device includes a plurality of sense amplifiers coupled with an array of memory cells, a plurality of output data lines receiving outputs of corresponding sense amplifiers, and a plurality of precharge circuits configured to apply a precharge voltage on the output data lines. A controller provides control signals to the sense amplifiers and to the precharge circuits, including to cause the precharge circuits to precharge the output data lines before the sense amplifiers drive output data signals to the output data lines. The plurality of sense amplifiers includes banks of sense amplifiers, and each bank includes a sense amplifier having an output driving each output data line. The memory device includes data output multiplexers having inputs coupled to the output data lines, and the precharge circuits are coupled to the output data lines between outputs of the sense amplifiers and the data output multiplexers.
Abstract:
Current drivers and biasing circuitry at least partly compensate for manufacturing variations and environmental variations such as supply voltage, temperature, and fabrication process.