摘要:
A power trench transistor comprises a semiconductor body in which a cell array and an edge region surrounding the cell array are formed. First edge trenches are formed within the edge region. The first edge trenches contain field electrodes and the longitudinal orientations of the first edge trenches run from the cell array towards the edge of the trench transistor.
摘要:
A semiconductor device is disclosed. One embodiment provides a top surface. A first lateral semiconductor region is arranged adjacent to the top surface and includes a transistor structure. The transistor structure includes a drain zone of a first conductivity type. A second lateral semiconductor region is arranged below the first semiconductor region and includes a junction field-effect transistor structure. The junction field-effect transistor structure includes a source zone of the first conductivity type which is electrically connected to the drain zone of the transistor structure.
摘要:
A method is specified for the operation of an automation device provided for the receiving of telegrams together with such an automation device, which is distinguished by the fact that the automation device manages a resource pool for telegrams which are arriving or received, that the automation device distinguishes between active and new communication relationships with a remote communication participant and that for each new communication relationship a free resource is selected from the resource pool and thereafter is used for this communication relationship, which thereby becomes an active communication relationship.
摘要:
A field effect semiconductor component has a bipolar transistor structure in a semiconductor body consisting of a lightly doped upper area of a first conductivity type as base region and of a lower heavily doped area as emitter region with a complementary conductivity type. Between the base region and the emitter region, a horizontal pn junction forms. The emitter region is in resistive contact with a large-area emitter electrode on the rear of the semiconductor component. On the top of the semiconductor component, a first insulated gate electrode and a second insulated gate electrode are arranged adjacently in the area close to the surface. A vertical pn junction region insulated from the upper area is arranged in such a manner that a collector region and the base region of the bipolar transistor structure can be controlled via the insulated gate electrodes (G1 and G2) arranged electrically separately.
摘要:
A percutaneous cannula is provided that directs blood into a vessel of a patient. The cannula includes a main cannula portion and a tip portion. The tip portion directs blood-flow in a direction generally counter to the direction of flow through the lumen. The cannula is configured to prevent blood-flow exiting the distal end from immediately discharging against a wall of the vessel.
摘要:
A percutaneous cannula is provided that directs blood into a vessel of a patient. The cannula includes a main cannula portion and a tip portion. The tip portion directs blood-flow in a direction generally counter to the direction of flow through the lumen. The cannula is configured to prevent blood-flow exiting the distal end from immediately discharging against a wall of the vessel.
摘要:
A power trench transistor comprises a semiconductor body in which a cell array and an edge region surrounding the cell array are formed. First edge trenches are formed within the edge region. The first edge trenches contain field electrodes and the longitudinal orientations of the first edge trenches run from the cell array towards the edge of the trench transistor.
摘要:
A percutaneous cannula is provided that directs blood into a vessel of a patient. The cannula includes a main cannula portion and a tip portion. The tip portion directs blood-flow in a direction generally counter to the direction of flow through the lumen. The cannula is configured to prevent blood-flow exiting the distal end from immediately discharging against a wall of the vessel.
摘要:
The method for producing a micromechanical component includes the following steps: producing a semi-finished micromechanical component; producing openings and forming a cavity; sealing the opening with sealing lids; removing material on the top surface of the first membrane layer, the surface of the first membrane layer being exposed and planarized. The invention also relates to a micromechanical component which can be produced according to the above method and to its use in sensors such as pressure sensors, microphones, or acceleration sensors.
摘要:
A low impedance VDMOS semiconductor component having a planar gate structure is described. The VDMOS semiconductor component contains a semiconductor body of a first conductivity type having two main surfaces, including a first main surface and a second main surface disposed substantially opposite to one another. A highly doped first zone of the first conductivity type is disposed in an area of the first main surface. A second zone of a second conductivity type separates the first zone from the semiconductor body. The first zone and the second zone have a trench with a bottom formed therein reaching down to the semiconductor body. An insulating material fills the trench at least beyond an edge of the second zone facing the semiconductor body. A region of the second conductivity type surrounds an area of the bottom of the trench.