摘要:
An electrically-erasable, electrically-programmable, read-only-memory cell array is formed in pairs at a face of a semiconductor substrate (22). Each memory cell includes a source (11) and a drain (12), with a corresponding channel (Ch) between. A control gate (14) is disposed over the floating gate (13), insulated by an intervening inter-level dielectric (27). The floating gate (13) and the control gate (14) include a channel section (Ch). The channel section (Ch) is used as a self-alignment implant mask for the sources (11) and drains (12), such that the channel-junction edges are aligned with the corresponding edges of the channel section (Ch). Each memory cell is programmed by hot-carrier injection from the channel to the floating gate (13), and erased by Fowler-Nordheim tunneling from the floating gate (13) to the source (11). The program and erase regions of each cell are physically separate from each other, and the characteristics of each of those regions may be made optimum independently from each other. Field oxide insulators (25) defining the channels (Ch) and the source line (17) have straight-line edges adjacent the source line (17) and adjacent the channel (Ch).
摘要:
A contact-free floating-gate non-volatile memory cell array and process with silicided NSAG bitlines and with source/drain regions buried beneath relatively thick silicon oxide. The bitlines have a relatively small resistance, eliminating the need for parallel metallic conductors with numerous bitline contacts. The array has relatively small bitline capacitance and may be constructed having relatively small dimensions. Bitline isolation is by P/N junction or by oxide-filled trench, permitting relatively small spacing between transistors. Wordlines may be formed from silicided polycrystalline or other material with low resistivity. Coupling of programming and erasing voltages to the floating gate is improved by using an insulator with relatively high dielectric constant between the control gate and the floating gate. The resulting structure is a dense cross-point array of programmable memory cells.
摘要:
A contact-free floating-gate non-volatile memory cell array and process with silicided NSAG bitlines and with source/drain regions buried beneath relatively thick silicon oxide. The bitlines have a relatively small resistance, eliminating the need for parallel metallic conductors with numerous bitline contacts. The array has relatively small bitline capacitance and may be constructed having relatively small dimensions. Isolation between wordlines and between bitlines is by thick field oxide regions. A thick field oxide strip separates each ground conductor/bitline pair. Wordlines may be formed from silicided polycrystalline or other material with low resistivity. Coupling of programming and erasing voltages to the floating gate is improved by extending the gates over the thick field oxide and perhaps by using an insulator with relatively high dielectric constant between the control gate and the floating gate. The four sides of the floating gates are defined with a single patterning step. The resulting structure is a dense cross-point array of programmable memory cells.
摘要:
An apparatus including a volume of phase change material disposed between a first conductor and a second conductor on a substrate, and a plurality of electrodes coupled to the volume of phase change material and the first conductor. A method including introducing, over a first conductor on a substrate, a plurality of electrodes coupled to the first conductor, introducing a phase change material over the plurality of electrodes and in electrical communication with the plurality of electrodes, and introducing a second conductor over the phase change material and coupled to the phase change material.
摘要:
An EPROM or flash EEPROM, which has an array of single-transistor, stacked-gate, memory cells. Active areas for transistor elements are in columns up and down the array, with columns being isolated by thick field oxide strips (220). Word lines (236) and source lines (212) run across the array. Bit lines (216) run along the active area columns to connect transistor drains (218). Bit lines are perpendicular to word lines. Each stacked gate includes a control gate (232) and a floating gate (230), with the latter having a top portion (230b) and a bottom portion (230a) that are separately deposited and etched. The bottom portion (230a) is etched in strips along the active area columns, and define the gate width of each cell. The top portion (230b) overlaps the bottom portion (230a) to improve capacitance between control gate (232) and floating gate (230).
摘要:
A CMOS memory cell array, and a process for making it, that avoids problems caused by LOCOS isolation of cells. Moats are formed by etching away columns of a thick field oxide layer. The moats have two-tiered sidewalls, such that an upper tier is sloped, and a lower tier is more vertical. This approach provides the advantages of sloped sidewalls, but avoids filament problems. After the moats are formed, subsequent fabrication steps may be in accordance with conventional fabrication techniques for CMOS arrays.
摘要:
A CMOS memory cell array and a method of forming it, which avoids problems caused by field oxide corner-rounding. A moat pattern defines alternating columns of active areas and field oxide regions. A source line pattern defines rows of source lines. Silicon dopant is implanted in areas not covered by the source line pattern to form buried n+ source lines. The field oxide regions are formed in areas not covered by the moat pattern. Subsequent fabrication steps may be in accordance with conventional CMOS fabrication techniques.
摘要:
A nonvolatile memory cell having separate regions for programming and erasing. The cells are formed in an array at a face of a semiconductor body, each cell including a source that is part of a source-column line and including a drain that is part of a drain-column line. Each cell has first and second sub-channels between source and drain. The conductivity of the first sub-channel of each cell is controlled by a field-plate, which is part of a field-plate-column line, positioned over and insulated from the first sub-channel. The conductivity of each of the second sub-channels is controlled by a floating gate formed over and insulated from the second sub-channel. Each floating gate has a first tunnelling window positioned over the adjacent source-column line and has a second tunnelling window positioned over the adjacent drain-column line. Row lines, including control gates, are positioned above and insulated from the floating gates of the cells for reading, programming and erasing the cells. The field-plate conductor permits programming of the cells through the first tunnelling window only and erasing of the cells through the second tunnelling window only, or vice versa.
摘要:
A diffusionless source/drain conductor, electrically-erasable, electrically-programmable read-only memory cell is formed at a face of a semiconductor layer (38) of a first conductivity type and includes a source conductor (10), a drain conductor (12), a channel region (18), and a tunnel region (22). Source conductor (10) and drain conductor (12) are disposed to create inversion regions, of a second conductivity type, opposite said first conductivity type, in the source inversion region (14) and drain inversion region (16) of semiconductor layer (38) of the layer semiconductor, upon application of voltage. Thin oxide tunneling window (22) is disposed adjacent source conductor (10). A floating gate (24) disposed adjacent tunneling window can be charged or discharged by Fowler-Nordheim tunneling when a voltage is applied between the inversion created in source inversion region (14) and a control gate (26) insulatively adjacent floating gate (24).
摘要:
The structure and method of this invention provide, for example, electrical isolation between active elements in adjacent rows and/or columns of an integrated circuit by use of a self-aligned field-plate conductor formed over and insulated from the substrate regions that are bounded by the channel regions of field-effect transistors in adjacent rows and that are bounded by the bitlines forming those transistors in a column. The field-plate conductor is formed, for example, in a strip that extends over the isolation areas and thermal insulator regions between row lines of the memory cell array. The field-plate conductor strip is connected to a voltage supply that has a potential with respect to the potential of the semiconductor substrate which causes the isolation areas to be nonconductive. Component density may be increased over that of prior-art structures and methods.