摘要:
A method for in-situ cleaning of polysilicon-coated quartz furnaces are presented. Traditionally, disassembling and reassembling the furnace is required to clean the quartz. This procedure requires approximately four days of down time which can be very costly for a company. In addition, cleaning the quartz requires large baths filled with a cleaning agent. These baths occupy a large amount of laboratory space and require a large amount of the cleaning agent. Cleaning the furnace in-situ eliminates the very time consuming procedure of assembling and disassembling the furnace and at the same time requires less laboratory space and less amount of cleaning agent. The polysilicon remover may be either a mixture of hydrofluoric and nitric acid or TMAH. TMAH is preferred because it less hazardous than hydrofluoric acid and compatible with more materials. The cleaning agent may be introduced into the furnace either from the built-in injectors or from additionally installed injectors. If the built-in injectors are used, the input system of the furnace is cleaned in addition to the quartz inner lining.
摘要:
A method of growing an oxide film in which the upper surface of a semiconductor substrate is cleaned and the semiconductor substrate is dipped into an acidic solution to remove any native oxide from the upper surface. The substrate is then directly transferred from the acidic solution to an oxidation chamber. The oxidation chamber initially contains an inert ambient maintained at a temperature of less than approximately 500.degree. C. The transfer is accomplished without substantially exposing the substrate to oxygen thereby preventing the formation of a native oxide film on the upper surface of the substrate. Thereafter, a fluorine terminated upper surface is formed on the semiconductor substrate. The temperature within the chamber is then ramped from the first temperature to a second or oxidizing temperature if approximately 700.degree. C. to 850.degree. C. The presence of the fluorine terminated upper surface substantially prevents oxidation of the semiconductor substrate during the temperature ramp. A silicon-oxide film such as silicon dioxide is then grown on the fluorine terminated upper surface of the semiconductor substrate by introducing an oxidizing ambient into the chamber. After the formation or growth of the silicon-oxide, polysilicon is deposited on the silicon oxide film.
摘要:
A semiconductor manufacturing process in which single crystal silicon substrate is immersed into an oxidation chamber maintained at a first temperature between 400.degree. and 700.degree. C. for a first duration. The oxidation chamber includes a first ambient gas of N.sub.2 or Argon. A second ambient gas is then introduced into the oxidation chamber. The second ambient gas includes a fluorine species to remove any residual oxide from the upper surface of the semiconductor substrate and to form a fluorine terminated upper surface. The ambient temperature within said oxidation chamber is then ramped to a second temperature in the range of approximately 600.degree. to 950.degree. C. A third ambient gas is introduced into said oxidation chamber to form a base oxide layer on the fluorine terminated upper surface of said semiconductor substrate. The third ambient gas includes oxygen and, preferably, the base oxide layer consists essentially of silicon and oxide. A fourth ambient gas, which includes a nitrogen species, is then introduced into the oxidation chamber and the base oxide layer is reoxidized to form an oxynitride layer. Thereafter, a conductive gate structure is formed on the oxynitride layer and a source/drain impurity distribution is introduced into a pair of source/drain regions within the semiconductor substrate.
摘要:
A semiconductor manufacturing process in which a single crystal silicon semiconductor substrate is immersed in an oxidation chamber maintained at a first temperature preferably between 400.degree. and 700.degree. C. for a first duration. During the first duration, the oxidation chamber comprises a first ambient gas of N.sub.2 or Argon. Thereafter, the ambient temperature within the oxidation chamber is ramped to a second temperature in the range of approximately 600.degree. to 1100.degree. C. NH.sub.3 is then introduced into the oxidation chamber simultaneously with either NO or N.sub.2 O to form an oxynitride layer. Thereafter, a conductive gate structure is formed on the oxynitride layer and a source/drain impurity distribution is introduced into a pair of source/drain regions laterally displaced on either side of the channel region of the semiconductor substrate. The channel region is aligned with the conductive gate. Preferably, the resistivity of an epitaxial layer of the semiconductor substrate is in the range of approximately 10 to 15 .OMEGA.-cm. In one embodiment, the first ambient gas further includes 1 to 10% oxygen and the first temperature is in the range of approximately 600.degree. C. to 700.degree. C. In one embodiment, a thin base oxide film consisting essentially of silicon an oxygen is formed on the upper surface of the semiconductor substrate prior to the oxynitride formation. In one embodiment of the invention, the oxynitride layer is annealed in an N.sub.2 ambient at an anneal temperature in the range of approximately 600.degree. C. to 1100.degree. C. for a duration in the range of 30 seconds to 20 minutes.
摘要:
A transistor is provided having a metal silicide gate spaced above a semiconductor substrate by a high-dielectric-constant ceramic gate dielectric. The entire gate conductor is preferably composed of a metal silicide. In an embodiment, the metal silicide is cobalt silicide and the ceramic gate dielectric is barium strontium titanate, lead lanthanum zirconate titanate barium zirconate titanate, cerium oxide, or tin oxide. In another embodiment, the ceramic gate dielectric has nitrogen atoms incorporated therein. The transistor may also include dielectric spacers adjacent opposed sidewall surfaces of the gate conductor, lightly doped drain regions arranged underneath the spacers, and source and drain regions arranged adjacent the lightly doped drain regions.
摘要:
The present invention generally provides a semiconductor device and fabrication process in which gate electrode formation is integrated with the formation of isolation regions. Consistent with one embodiment of the invention, the semiconductor device is formed by forming at least two adjacent gate electrode stacks of the substrate. A layer of dielectric material is formed over regions of the substrate between the two adjacent gate electrode stacks and portions of the dielectric material layer are selectively removed to leave an isolation block of the dielectric material between the two adjacent gate electrode stacks. The gate electrode stacks may, for example, have a thickness ranging from about 2,500 to 6,000 Å. In accordance with one aspect of the invention, active regions are formed in the substrate between the isolation block and at least one of the gate electrode stacks.
摘要:
The present disclosure relates to a chemical vapor deposition system including a chemical vapor deposition chamber, and a circlet wafer positioned within the chemical vapor deposition chamber. The circlet wafer is mounted on a rotatable member that at least partially extends through an opening of the wafer. A drive mechanism is used to rotate the rotatable member and the circlet wafer. The system also includes a gas injector for injecting reactive gases toward the circlet wafer. The present disclosure also relates to a chemical vapor deposition system including a chemical vapor deposition chamber, a wafer positioned within the chemical vapor deposition chamber, and a gas injector for injecting first and second reactive gases toward the wafer. The gas injector includes a mixing region for mixing the first and second reactive gases before the first and second reactive gases are discharged from the gas injector.
摘要:
A semiconductor process in which a low temperature oxidation of a semiconductor substrate upper surface followed by an in situ deposition of polysilicon are used to create a thin oxide MOS structure. Preliminarily, the upper surface of a semiconductor substrate is cleaned, preferably with a standard RCA clean procedure. A gate dielectric layer is then formed on the upper surface of the substrate. A first polysilicon layer is then in situ deposited on the gate dielectric layer. An upper portion of the first polysilicon layer is then oxidized and the oxidized portion is thereafter removed from the upper surface of the first polysilicon layer. A second polysilicon layer is subsequently deposited upon the first polysilicon layer. Preferably, the formation of the gate dielectric on the semiconductor substrate upper surface comprises annealing the semiconductor substrate in an ambient comprising an inert species and O2. The ambient temperature of the first oxidation chamber is preferably maintained at a temperature less than approximately 300° C. during the formation of the gate dielectric. The first polysilicon layer, in the preferred embodiment, is deposited in situ such that the semiconductor substrate remains within the first oxidation chamber during the deposition of the first polysilicon layer. The oxidation of an upper portion of the first polysilicon layer is preferably accomplished in a nitrogen bearing ambient so that nitrogen is introduced into the first polysilicon layer to inhibit the penetration of mobile impurities across the gate dielectric into the channel region of the transistor and enhance the device properties.
摘要:
In an integrated circuit, a pair of IGFET devices can be formed with reduced dimensions without requiring the use of higher resolution optical masks. A gate electrode is formed with a layer of silicon nitride and a photoresist layer formed thereon. The dimensions of the photoresist layer are reduced by a trim etch and the dimension of the nitride layer reduced by a nitride etch. After removing the photoresist layer, a silicon oxide layer is grown over the exposed gate electrode and substrate. The nitride layer is removed leaving a pattern in the silicon oxide layer. An anisotropic etch guided by the pattern in the silicon oxide layer divides the gate electrode into two portions with an aperture therebetween. By proper doping, a IGFET structure can be formed that has two IGFET devices having a shared source/drain region and occupying the same area on the surface of the substrate as a single IGFET device previously occupied.
摘要:
An integrated circuit includes a plurality of transistors formed to include insulative punchthrough regions. Each of the plurality of transistors includes a channel formed upon a substrate, an insulative punchthrough region formed below the channel, a source formed upon the insulative punchthrough region residing adjacent a first end of the channel, a drain formed upon the insulative punchthrough region residing adjacent a second end of the channel, a gate oxide formed above the channel and a gate conductor formed above the gate oxide. Isolation regions may also be formed in the substrate that have an etch stop defination that was formed upon formation of the insulative punchthrough region. A voltage threshold region may be formed between the gate oxide and the channel and lightly doped regions may be formed adjacent the channel. The insulative punchthrough region may be and oxide layer formed within the substrate in an oxygen implant step that also formed the etch stop defination. The transistors and other circuit elements formed in the substrate may be interconnected to form an integrated circuit.