Abstract:
An apparatus comprising a first stage and a second stage. The first stage may be configured to generate an intermediate signal having a first voltage in response to an input signal having a second voltage received from a pad. The second stage may be configured to generate a core voltage in response to the first voltage. The voltage received from the pad may operate at a voltage compliant with one or more published interface specifications.
Abstract:
An apparatus comprising a first circuit, a second circuit, and a third circuit. The first circuit may be configured to generate a first control voltage and a second control voltage. The second circuit may be configured to generate a bias signal in response to the first control voltage and the second control voltage. The third circuit may be configured to generate a filtered signal in response to the bias signal. The filtered signal may be added to the first control voltage and the second control voltage to provide AC noise suppression when generating the bias signal.
Abstract:
In one embodiment, the present invention includes a method for performing multicasting, including receiving a write request including write data and an address from a first server in a first canister, determining if the address is within a multicast region of a first system memory, and if so, sending the write request directly to the multicast region to store the write data and also to a mirror port of a second canister coupled to the first canister to mirror the write data to a second system memory of the second canister. Other embodiments are described and claimed.
Abstract:
Described embodiments provide for protecting from DC and transient over-voltage conditions an input/output (“I/O”) buffer having first and second I/O transistors. The first I/O transistor is coupled to a first over-voltage protection circuit adapted to prevent an over-voltage condition on at least the first I/O transistor. The second I/O transistor is coupled to a second over-voltage protection circuit adapted to prevent an over-voltage condition on at least the second I/O transistor. First and second bias voltages are generated from an operating voltage of the buffer. A third bias voltage is generated from either i) the first bias voltage, or ii) an output signal voltage of the buffer and a fourth bias voltage is generated from either i) the second bias voltage, or ii) the output signal voltage of the buffer. The third and fourth bias voltages are provided to the first and second over-voltage protection circuits, respectively.
Abstract:
A power detect system and circuit for detecting a voltage level of an input/output supply voltage (VDDIO) in a circuit of low voltage devices is disclosed. In one embodiment, the power detect system and circuit includes a voltage divider coupled between the VDDIO and a negative supply voltage (VSS) for generating a bias voltage, a first inverter coupled between a core voltage (VDD) and the VSS for generating a first node voltage based on the bias voltage, a native device coupled between the VDDIO and the VSS for generating a second node voltage based on the bias voltage, and a switch coupled between the first inverter and the native device for controlling the second node voltage based on the first node voltage. The power detect system further includes a second inverter coupled between the VDD and the VSS for generating an output voltage based on the second node voltage.
Abstract:
A high voltage input receiver using low voltage transistors is disclosed. In one embodiment, an input receiver circuit includes a comparator circuit and an inverter circuit. The comparator circuit includes a differential input module for generating a control signal by comparing an external voltage and a reference voltage, and a decision module for generating an inverter input signal based on the control signal. In addition, the reference voltage is used to set dc trip point of the input receiver. Moreover, the input receiver includes one or more stress protection modules to protect key components of the input receiver from exceeding their reliability limits.
Abstract:
In one example, a system receives, from different sources, data having various formats, the received data is selected and combined in accordance with the invention to create accurate records. Specifically, the inventive system organizes the received data into uniform data records having a predetermined format. The data in the uniform data records is converted, if necessary, to conform to a predetermined nomenclature, resulting in normalized data records. The normalized data records are then processed to extract and/or deduce information desired by users.
Abstract:
In accordance with embodiments disclosed herein, there are provided methods, systems, mechanisms, techniques, and apparatuses for presentation of direct accessed storage under a logical drive model; for implementing a distributed architecture for cooperative NVM Data protection; data mirroring for consistent SSD latency; for boosting a controller's performance and RAS with DIF support via concurrent RAID processing; for implementing arbitration and resource schemes of a doorbell mechanism, including doorbell arbitration for fairness and prevention of attack congestion; and for implementing multiple interrupt generation using a messaging unit and NTB in a controller through use of an interrupt coalescing scheme.
Abstract:
A method of and system for protecting a computer system against denial-of-service attacks or other exploitation. The method comprises collecting network data and analyzing the network data using statistical and heuristic techniques to identify the source of the exploitation upon receiving an indication of exploitation. Upon identifying the network source, the network data associated with the network is blocked, redirected, or flow controlled. Preferably, the method also includes identifying when the system is being exploited.
Abstract:
Embodiments of the present disclosure describe methods, apparatus, and system configurations for cyclic redundancy check circuits using Galois-field arithmetic.