摘要:
A method for monitoring a rechargeable battery (1) with multiple cells (2, 2a . . . 2n) is described, as well as a cell monitoring unit (3, 3a . . . 3n) for such, in which in a normal mode (MN) a measurement (UCa, UCb) of a parameter of a cell (2, 2a . . . 2n) is determined using a reference value (URa, URb) provided for each cell (2, 2a . . . 2n). In addition, in a test mode (MT) the reference values (URa, URb) of adjacent cells (URb) used for determining measurements (UCa, UCb) of the parameter in question and provided for each cell (2, 2a . . . 2n) are compared with each other in a periodically recurring manner. An error signal is issued if the comparison result exceeds a predefinable limit value.
摘要:
A battery (1a . . . 1e) having a housing (2) and a plurality of galvanic cells (3) arranged in the housing (2) is provided. In addition, a fan (5a . . . 5c) is arranged in the housing (2) to create a fluid flow circulating inside the housing (2). According to the invention, a heat exchanger (6a . . . 6e) having a forward flow (7) and a return flow (8) for a heat transfer medium, which lead out of the housing (2) is arranged in the flow path (A) of the fluid flow.
摘要:
A voltage converter (1a . . . 1g), in particular a resonant converter for converting an input AC or DC voltage (UE) into an output DC voltage (UA). On the secondary side, a first secondary capacitor (CS1) is arranged between the secondary partial windings (WS1, WS2) of a transformer (TR1); furthermore, a first secondary full-bridge rectifier (GS1) provides the output direct voltage (UA), the inputs of which are connected to a secondary partial winding (WS1, WS2) each of the transformer (TR1), resulting, at the input of the first secondary full-bridge rectifier (GS1), in a series connection including the secondary partial windings (WS1, WS2) and the first secondary capacitor (CS1). Finally, the voltage converter (1a . . . 1f) includes a second secondary full-bridge rectifier (GS2) connected in parallel with the first secondary full-bridge rectifier (GS1) for providing the output direct voltage (UA), wherein the first secondary capacitor (CS1) is connected to the input of the second secondary full-bridge rectifier (GS2).
摘要:
Electrical systems for balancing charging or loading of parallel-arrayed charge accumulators (1, 2), particularly batteries, storage batteries, etc. The systems include circuitry used to supply voltage to a load (7) or to electrically charge the accumulators (1, 2), or both, via connections (3a, 3b, 4a, 4b) at the charge accumulator side and interface connections at the load or charger side. An electrical circuit (10) has at least one DC converter (11) that converts the differential voltage between the matching polarity connections (3a, 4a) at the charge accumulator side, or converts a voltage derived from this differential voltage. Voltage supply devices for loads, or charging devices for charge accumulators, may include circuits of this type.
摘要:
The zero-voltage converter is able to perform at extremely high power levels and bares significant benefits to all levels; system, inverter and circuitry level. Power losses are avoided by using a new developed resonant topology. EMI problems are reduced by power module integrated capacitors as well as smart selection of the terminal technology and under full utilization of the analog components and their potentials. The power module developed for this specific application is designed under a maxim of gaining highest power density as well as lowest stray inductances. High switching frequencies enable even special electro motors with extremely low leakage inductance to perform well. This is in particular beneficial for ultra high speed drives or motors with a high pole pair number. The mechanical concept of the inverter can specifically be adopted to the referring vehicle and to its available installation space. Thus, also (hybrid) electrical vehicles can be designed based on such highly innovative conception.
摘要:
A circuit arrangement (1) for power distribution in a motor vehicle is described, which comprises a transformer (T1, T1a . . . T1n) having at least three transformer windings (W1, W1a . . . W1n, W2, W2a . . . W2n, W3, W3a . . . W3n). A first and second onboard supply inside the vehicle and a power supply which is outside the vehicle can be connected to the circuit arrangement (1), which supplies are coupled via the transformer windings (W1, W1a . . . W1n, W2, W2a . . . W2n, W3, W3a . . . W3n) and converters (UR1, UR2, UR2a . . . UR2n, UR3, UR3a . . . UR3n). The third converter (UR3, UR3a . . . UR3n) can be connected via a first change-over switch (US1, US1′) alternatively to the first on-board supply inside the vehicle or to the power supply outside the vehicle. A plurality of first converters (UR 1) and/or a plurality of second converters (UR2, UR2a . . . UR2n) and/or a plurality of third converters (UR3, UR3a . . . UR3n) each being connected to the transformer windings (W1, W1a . . . W1n, W2, W2a . . . W2n, W3, W3a . . . W3n) can be switched in series or in parallel are provided.
摘要:
The invention relates to systems, devices, and components for inductively charging an electric energy store of an electric vehicle (1) via a charging section (2). The device includes a registration device (20) for localizing the electric vehicle (1) on the charging section (2), an electrical energy source (3) preferably embodied as a high-frequency-energy source, a system of primary conductor loops each with at least one primary winding provided in the charging section (2) for supplying AC current via the electrical energy source (3), a secondary conductor loop arranged on the electric vehicle (1) having at least one secondary winding at least partially permeated by the induction flux, an energy supply line (4), and switching devices (5) for connecting the energy supply line (4) and the system of the primary conductor loops to the electrical energy source (3). All primary conductor loops of the charging section (2), and the secondary conductor loop may be implemented as double dipole loops (6,7,8).
摘要:
A terminal (3a . . . 3h) for the electrical connection of a plurality of electrochemical cells (2) of a accumulator, which terminal comprises a U-shaped outer rail (4a . . . 4f) and an actuating element (5a . . . 5g), is described. According to the invention, the actuating element (5a . . . 5g) is coupled to a clamping element (6a . . . 6f . . . 6h) in such a way that the clamping element (6a . . . 6f . . . 6h) is pressed against at least one limb (4a′ . . . 4f′) of the outer rail (4a . . . 4f) on actuation of the actuating element (5a . . . 5g).
摘要:
A controller (2) and a method for a DC converter (1), wherein the DC converter (1) comprises an input (E), an output (A), a connection to ground (GND), and also at least two half-bridges with two switching elements each (TR1 . . . TR4) connected in series and an inductance (L1, L2) each connected with the point connecting the two switching elements. In accordance with the invention the controller (2) is equipped to measure the current (IL1, IL2) through the inductances (L1, L2), and controls the switching elements (TR2, TR4)/(TR1, TR2) positions on the ground side/input side always with negative/positive current through the inductance (L1, L2) into an off-state. Finally a DC converter (1) connected with the controller (2) is also specified.
摘要:
A Converter (1a.1c) for single-phase and three-phase Operation which comprises a three-phase rectifier to which three coils (La, Lb, Lc) are connected on the mains side is described. A first coil (La) is provided on the mains side with a switch (S) which connects the first coil (La) to the mains during three-phase Operation and connects it via a capacitor (C) either to the lower end (FP) of the rectifier or on the mains side to another coil (Lb, Lc) during single-phase Operation. In addition, a d.c. voltage supply and a battery charger (5a.5c) which comprise the Converter (1a.1c) according to the invention are described.