摘要:
A radiation-source unit is described which produces a radiation beam (30) with two components (9, 10) which are polarized perpendicularly relative to one another and which have different frequencies. The unit comprises a radiation source, a beam splitter (4), an acousto-optical modulation system (13, 18) for generating the frequency difference, and a beam combiner (25). Since the beam splitter and the beam combiner are transmission elements and their connecting line extends through the center of the modulation system the unit is compact and no alignment problems occur. Moreover, the frequency difference is adjustable over a wide range.
摘要:
Proximity sensor, particularly for usage in an electronic mobile device, comprising at least one acoustic transducer adapted for receiving acoustic signals at least in parts of the frequency range of human audible sound and emitting and/or receiving ultrasonic signals for proximity estimation. The acoustic transducer preferably is a Micro-Electro-Mechanical-Systems (MEMS) microphone. Further, a method in an electronic device comprising an acoustic transducer is provided comprising the steps of generating at least one electric signal in the frequency range of ultrasonic sound, emitting at least one ultrasonic signal by means of the acoustic transducer; receiving at least one ultrasonic signal by means of the acoustic transducer; deducing from the at least one emitted ultrasonic signal and the at least one received ultrasonic signal at least the delay between emission of the emitted ultrasonic signal and reception of the corresponding ultrasonic signal.
摘要:
An immersion lithographic apparatus includes a voltage generator or power source that applies a potential difference to an object in contact with the immersion liquid such that bubbles and/or particles in the immersion liquid are either attracted or repelled from that object due to the electrokinetic potential of the surface of the bubble in the immersion liquid.
摘要:
First apparatuses (10) such as tags and batches comprise receivers (11) for receiving ultrasonic signals (1) comprising first codes from sources (27, 30), analyzers (12) for analyzing first codes, transmitters (13) for transmitting electromagnetic signals (2) comprising second codes to second apparatuses (20), and controllers (14) for, in response to analyses of first codes, controlling at least parts of the first apparatuses (10), such as modes, transmissions, and supplies of second codes. Second apparatuses (20) such as parts of interfaces and parts of stations comprise receivers (21) for receiving the electromagnetic signals (2) comprising second codes from the first apparatuses (10), analyzers (22) for analyzing second codes, and generators (23) for, in response to analyses of second codes, generating parameter signals (5) defining issues like registration issues and authorization issues and environmental issues, and analysis results. The first apparatuses (10) may form part of first devices (100) such as mobile phones and organizers, and the second apparatuses (20) may form part of second devices (200) such as interfaces and stations.
摘要:
A system and method is described for detecting a plurality of analytes in a sample. The characterization system (100) comprises an aperture array (108) and a lens array (110) for generating and focusing a plurality of excitation sub-beams on different sub-regions of a substrate. These sub-regions can be provided with different binding sites for binding different analytes in the sample. By detecting the different luminescent responses in a detector, the presence or amount of different analytes can be determined simultaneously. Alternatively or in addition thereto collection of the luminescence radiation can be performed using the lens array for directly collecting the luminescence response and for guiding the collected luminescence response to corresponding apertures. In a preferred embodiment, the excitation sub-beams are focused at the side of the substrate opposite of the lens array and an immersion fluid is provided between the lens array and the substrate to increase the collection efficiency of the luminescence radiation.
摘要:
The invention relates to a method of determining a parameter relating to image blur in an imaging system (IS) comprising the step of illuminating an object having a test pattern (MTP) by means of the imaging system (IS), thereby forming an image of the test pattern. The test pattern (MTP) has a size smaller than the resolution of the imaging system (IS), which makes the image of the test pattern independent of illuminator aberrations. The test pattern (MTP) is an isolated pattern, which causes the image to be free of optical proximity effects. The image is blurred due to stochastic fluctuations in the imaging system and/or in the detector detecting the blurred image. The parameter relating to the image blur is determined from a parameter relating to the shape of the blurred image. According to the invention, resist diffusion and/or focus noise may be characterized. In the method of designing a mask, the parameter relating to the image blur due to diffusion in the resist is taken into account. The computer program according to the invention is able to execute the step of determining the parameter relating to the image blur from a parameter relating to a shape of the blurred image.
摘要:
A lithographic apparatus includes a radiation system that provides a beam of radiation, and a support structure that supports a patterning structure. The patterning structure is configured to pattern the beam of radiation according to a desired pattern. The apparatus also includes a substrate support that supports a substrate, and a projection system that projects the patterned beam onto a target portion of the substrate. The projection system includes an optical element that has a beam exit area through each of which the patterned beam passes. The apparatus further includes a fluid cleaning system that cleans a fluid to be introduced into a region in between the optical element and the substrate. The fluid cleaning system includes a fluid inlet, a fluid outlet, and a cleaning zone disposed between the inlet and outlet. The cleaning zone includes a nucleated surface provided with a plurality of nucleation sites.
摘要:
The performance of an illumination system in, for example, a lithographic projection apparatus can be measured accurately and reliably by means of a test object (55) comprising at least one Fresnel zone lens (30) and an associated reference mark, preferably a ring (40). By superposed imaging of these and detecting and evaluating the composed image (56), telecentricity errors and aberrations of the illumination can be measured.
摘要:
The performance of a scanning electron microscope (SEM) (10) is determined by scanning, with this SEM, porous silicon surface areas (PSF, PSC) each having a different average pore size, calculating the Fourier transform spectra (Fc) of the images of the surface areas and extrapolating the resolution (R) at a zero signal-to-noise ratio (SNR) from the width (W(1/e)), the signal amplitude (Sa) and the noise offset (NL) of the spectra. A test sample provided with the different surface areas is obtained by anodizing a silicon substrate (Su) at a constant electric current, while continuously decreasing the substrate area exposed to the etching electrolyte (El).
摘要:
A lithographic apparatus is disclosed. The apparatus includes a radiation system that provides a beam of radiation, and a support structure that supports a patterning structure. The patterning structure is configured to pattern the beam of radiation according to a desired pattern. The apparatus also includes a substrate support that supports a substrate, and a projection system that projects the patterned beam onto a target portion of the substrate. The projection system includes an optical element that has a beam entry area and an optical element that has a beam exit area through each of which the patterned beam passes. The apparatus further includes a nucleated surface that is associated with the projection system on which a plurality of nucleation sites are provided. The surface is disposed away from at least one of the beam entry area and the beam exit area.