Abstract:
An apparatus includes a low noise amplifier (LNA) having an input configured to receive a radio frequency signal. The apparatus also includes a notch filter coupled to an input of the LNA. The notch filter is configured to attenuate the radio frequency signal at a notch frequency.
Abstract:
An apparatus includes a first plurality of low noise amplifiers (LNAs) and a cascaded switch configured to route outputs of the first plurality of LNAs to a second plurality of LNAs.
Abstract:
Amplifiers with noise splitting to improve noise figure are disclosed. In an exemplary design, an apparatus (e.g., a wireless device, an integrated circuit, etc.) includes a plurality of amplifier circuits and at least one interconnection circuit. The amplifier circuits receive an input radio frequency (RF) signal. The interconnection circuit(s) are coupled between the plurality of amplifier circuits. Each interconnection circuit is closed to short the outputs or internal nodes of two amplifier circuits coupled to that interconnection circuit. The plurality of amplifier circuits may include a plurality of gain circuits coupled to a plurality of current buffers, one gain circuit and one current buffer for each amplifier circuit. Each amplifier circuit provides an output current, which may include a portion of the current from each of the plurality of gain circuits when the plurality of amplifier circuits are enabled.
Abstract:
A device includes at least one first amplifier circuit configurable to receive and amplify an input radio frequency (RF) signal having a first carrier at a first input signal level and provide a first amplified RF signal, and at least one second amplifier circuit configurable to receive and amplify the input RF signal having a second carrier at a second input signal level and provide a second amplified RF signal, the at least one first amplifier circuit having a first input impedance, the at least one second amplifier circuit having a second input impedance.
Abstract:
A device includes a first amplifier circuit coupled to a first transformer and a second transformer, the first transformer selectively coupled to a first shared power distribution network through a first switch, the second transformer selectively coupled to a second shared power distribution network through a second switch.
Abstract:
Techniques for routing and shielding signal lines to improve isolation between the signal lines are disclosed. In an exemplary design, an apparatus includes first, second, and third signal lines and a switch. The first, second, and third signal lines are configurable to carry first, second, and third signals, respectively. The switch is coupled between the second signal line and AC ground and is closed when the second signal line is not carrying the second signal. The second signal line isolates the first and third signal lines when the switch is closed. Adjacent signal lines are not active at the same time. A signal line may include positive and negative signal lines, which may have at least one cross over in order to cancel coupling between the positive and negative signal lines.
Abstract:
A device includes a first and a second low noise amplifier (LNA), a first degenerative inductance coupled between the first LNA and ground by a first ground connection, and a second degenerative inductance coupled between the second LNA and ground by a second ground connection, the first and second degenerative inductances configured to establish negative inductive coupling between the first and second degenerative inductances.
Abstract:
Techniques for providing low-cost and effective jammer rejection for a radio receiver. In an aspect, a notch filter is provided between a transformer and a differential mixer in the receiver. The notch frequency of the notch filter may be selected to correspond to an expected jammer frequency to effectively attenuate the jammer signal prior to down-conversion mixing by the mixer. The notch filter may be implemented using various techniques, e.g., an L-C combination having adjustable capacitance, and/or elliptic or Chebyshev filters.
Abstract:
Amplifiers with inductive degeneration and configurable gain and input matching are disclosed. In an exemplary design, an apparatus includes a gain transistor, an inductor, and an input matching circuit for an amplifier. The gain transistor has a variable gain determined based on its bias current. The inductor is coupled between the gain transistor and circuit ground. The input matching circuit is selectively coupled to the gain transistor based on the variable gain of the gain transistor. For example, the input matching circuit may be coupled to the gain transistor in a low-gain mode and decoupled from the gain transistor in the high-gain mode. In an exemplary design, the input matching circuit includes a resistor, a capacitor, and a second transistor coupled in series. The resistor is used for input matching of the amplifier. The second transistor couples or decouples the resistor to or from the gain transistor.
Abstract:
Techniques for calibrating a receiver based on a local oscillator (LO) signal from another receiver are disclosed. In an exemplary design, an apparatus (e.g., a wireless device or an integrated circuit) includes first and second local oscillator (LO) generators. The first LO generator generates a first LO signal used by a first receiver for frequency downconversion. The second LO generator generates a second LO signal used by a second receiver for frequency downconversion in a first operating mode. The second LO signal is used to generate a test signal for the first receiver in a second operating mode. The second LO signal may be provided as the test signal or may be amplitude modulated with a modulating signal to generate the test signal. The test signal may be used to calibrate residual sideband (RSB), second order input intercept point (IIP2), receive path gain, etc.