Abstract:
A method for fabricating a strained semiconductor-on-insulator substrate comprises bonding a donor substrate to a receiving substrate with a dielectric layer at the interface. The donor substrate comprises a monocrystalline carrier substrate, an intermediate etch-stop layer, and a monocrystalline semiconductor layer. The monocrystalline semiconductor layer is transferred from the donor substrate to the receiving substrate. Trench isolations are formed to cut a portion from a layer stack including the transferred monocrystalline semiconductor layer, the dielectric layer, and the strained semiconductor material layer. The cutting operation results in relaxation of strain in the strained semiconductor material, and in application of strain to the transferred monocrystalline semiconductor layer. After transferring the monocrystalline semiconductor layer and before the cutting operation, a portion of the carrier substrate is selectively etched with respect to the intermediate layer, and the intermediate layer is selectively etched with respect to the monocrystalline semiconductor layer.
Abstract:
A method for fabricating a strained semiconductor-on-insulator substrate includes bonding a donor substrate to a receiving substrate, with a dielectric layer at the interface, and transferring a monocrystalline semiconductor layer from the donor substrate to the receiving substrate. A portion is cut from a stack formed from the transferred monocrystalline semiconductor layer from the dielectric layer and from the strained semiconductor material layer. The cutting results in the relaxation of the strain in the strained semiconductor material, and in the application of at least a part of the strain to the transferred monocrystalline semiconductor layer. The method also involves the formation, on the strained semiconductor material layer of the receiving substrate, of a dielectric bonding layer or of a bonding layer consisting of the same relaxed, or at least partially relaxed, monocrystalline material as the monocrystalline semiconductor layer of the donor substrate.
Abstract:
The invention concerns a method of testing a semiconductor-on-insulator type structure comprising a support substrate, a dielectric layer having a thickness of less than 50 nm and a semiconductor layer, the structure comprising a bonding interface between the dielectric layer and the support substrate or the semiconductor layer or inside the dielectric layer, characterized in that it comprises measuring the charge to breakdown (QBD) of the dielectric layer and in that information is deduced from the measurement relating to the hydrogen concentration in the layer and/or at the bonding interface. The invention also concerns a method of fabricating a batch of semiconductor-on-insulator type structures including carrying out the test on a sample structure from the batch.
Abstract:
The invention relates to a process for treating a structure of semiconductor-on-insulator type successively comprising a support substrate, a dielectric layer and a semiconductor layer having a thickness of less than or equal to 100 nm, the semiconductor layer being covered with a sacrificial oxide layer, comprising measuring, at a plurality of points distributed over the surface of the structure, the thickness of the sacrificial oxide layer and of the semiconductor layer, so as to produce a mapping of the thickness of the semiconductor layer and to determine, from the measurements, the average thickness of the semiconductor layer, selective etching of the sacrificial oxide layer so as to expose the semiconductor layer, and carrying out a chemical etching of the semiconductor layer, the application, temperature and/or duration conditions of which are adjusted as a function of the mapping and/or of the mean thickness of the semiconductor layer, so as to thin, at least locally, the semiconductor layer by a thickness identified as being an overthickness at the end of the measurement step.
Abstract:
The invention concerns a method of testing a semiconductor on insulator type structure comprising a support substrate, a dielectric layer having a thickness of less than 50 nm and a semiconductor layer, the structure comprising a bonding interface between the dielectric layer and the support substrate or the semiconductor layer or inside the dielectric layer, characterized in that it comprises measuring the charge to breakdown (QBD) of the dielectric layer and in that information is deduced from the measurement relating to the hydrogen concentration in the layer and/or at the bonding interface. The invention also concerns a method of fabricating a batch of semiconductor on insulator type structures including carrying out the test on a sample structure from the batch.
Abstract:
A method of manufacturing a polycrystalline silicon carbide wafer includes the following stages: heat treatment of a polycrystalline silicon carbide slab; thinning of the polycrystalline silicon carbide slab, the thinning comprising a correction, by withdrawal of material from the polycrystalline silicon carbide slab, of a deformation brought about by the heat treatment.
Abstract:
The invention relates to a front-side imager comprising in succession: a semiconductor carrier substrate, a first electrically insulating separating layer, and a single-crystal semiconductor layer, called the active layer, comprising a matrix array of photodiodes, wherein the imager further comprises, between the carrier substrate and the first electrically insulating layer: a second electrically insulating separating layer, and a second semiconductor or electrically conductive layer, called the intermediate layer, arranged between the second separating layer and the first separating layer, the second separating layer being thicker than the first separating layer.
Abstract:
A semiconductor structure, including: a base substrate; an insulating layer on the base substrate, the insulating layer having a thickness between about 5 nm and about 100 nm; and an active layer comprising at least two pluralities of different volumes of semiconductor material comprising silicon, germanium, and/or silicon germanium, the active layer disposed over the insulating layer, the at least two pluralities of different volumes of semiconductor material comprising: a first plurality of volumes of semiconductor material having a tensile strain of at least about 0.6%; and a second plurality of volumes of semiconductor material having a compressive strain of at least about −0.6%. Also described is a method of preparing a semiconductor structure and a segmented strained silicon-on-insulator device.
Abstract:
A semiconductor on insulator type structure, which may be used for a front side type imager, successively comprises, from its rear side to its front side, a semiconductor support substrate, an electrically insulating layer and an active layer comprising a monocrystalline semiconductor material. The active layer is made of a semiconductor material having a state of mechanical stress with respect to the support substrate, and the support substrate comprises, on its rear side, a silicon oxide layer, the thickness of the oxide layer being chosen to compensate bow induced by the mechanical stress between the active layer and the support substrate during cooling of the structure after the formation by epitaxy of at least a part of the active layer on the support substrate.
Abstract:
The invention relates to a front-side imager comprising in succession: —a semiconductor carrier substrate, a first electrically insulating separating layer, and a single-crystal semiconductor layer, called the active layer, comprising a matrix array of photodiodes, wherein the imager further comprises between the carrier substrate and the first electrically insulating layer: —a second electrically insulating separating layer, and —a second semiconductor or electrically conductive layer, called the intermediate layer, arranged between the second separating layer and the first separating layer, the second separating layer being thicker than the first separating layer.