摘要:
Provided are a DNA PCR module and a multiple PCR system using the same. More particularly, provided are a DNA PCR module with a combined PCR thermal cycler and PCR product detector, and a multiple PCR system using the same.
摘要:
Provided is a method for quantifying an initial concentration of a nucleic acid from a real-time nucleic acid amplification data. Nucleic acid (DNA or RNA) extracted from organism or virus is amplified using an enzyme. Then, the initial concentration of the nucleic acid is found by calculating the characteristic amplification cycle number or the characteristic amplification time at which the fluorescence intensity of the nucleic acid subtracted by the background fluorescence intensity of the nucleic acid has half of its maximum value, or the characteristic amplification cycle number or the characteristic amplification time at which the amplification efficiency has the maximum or the minimum value, or the prior-to-amplification fluorescence intensity of the nucleic acid subtracted by the background fluorescence intensity of the nucleic acid. Accordingly, the initial concentration of the nucleic acid can be calculated without differentiation or integration.
摘要:
A micro PCR device comprising an amplification chamber is provided. The amplification chamber has an inner surface coated with a polycationic polymer or a polyanionic polymer and includes electrodes.
摘要:
Provided is a method of purifying a target substance using silver nanoparticles. The method includes: mixing a sample containing molecules having a thiol group with the silver nanoparticles to obtain a complex of the molecules having the thiol group with the silver nanoparticles; and isolating and removing the complex from the mixture. By using the purification method, PCR amplifiable DNAs can be rapidly purified, and thus, the method can be very efficiently applied to lab-on-chip (LOC).
摘要:
Provided is a cell lysis method including: preparing a cell sample to be lysed; heating the cell sample; and cooling the cell sample by causing an endothermic reaction near the cell sample. According to the method, cell lysis can be simply and conveniently performed without regard to location and without additional devices since a separate energy source is not required and the apparatus is portable. In particular, when cell lysis is performed in a biochip using a small amount of sample, a greater cell lysis effect can be obtained. In addition, cell lysis efficiency is significantly improved, compared to when only heating is performed.
摘要:
Provided is a microchip unit, including a microchip on which a plurality of micro-channels are formed, a housing disposed below the microchip to fix the microchip; and at least two injecting and sealing elements having through-holes corresponding to inlets of the microchip. The injecting and sealing elements are vertically fixed on the top of the housing and slide in a horizontal direction from a first location to a second location and vice versa. The through-holes are aligned with inlets of the microchip so that a reaction solution can be injected through the through-holes when the injecting and sealing elements are placed at the first location. The inlets of the microchip are sealed by elastic members formed on bottom surfaces of the injecting and sealing elements when the injecting and sealing elements are placed at the second location.
摘要:
An ultra small fluorescence detector capable of detecting in real time reaction undergoing in a micro chamber having a predetermined volume and disposed on a microfluid chip is provided. The fluorescence detector for detecting in real time PCR amplification undergoing in the microfluid chip having a micro chamber with a predetermined volume includes a light source generating an excitation beam, a first optical system capable of irradiating the excitation beam having a predetermined spot size to the micro chamber, a first detector, and a second optical system reflecting a fluorescent beam derived from the excitation beam having the predetermined spot size in the micro chamber to the first detector. Accordingly, the fluorescence detector is designed such that light emitted by a light source is focused between a first mirror and an objective lens. Therefore, the spot size of an excitation beam transmitted by the objective lens is largely formed so that the excitation beam can be irradiated on the whole micro chamber of the microfluid chip, thereby detecting a fluorescent beam on a broader area.