摘要:
A first method for fabricating an anode for use in sodium-ion and potassium-ion batteries includes mixing a conductive carbon material having a low surface area, a hard carbon material, and a binder material. A carbon-composite material is thus formed and coated on a conductive substrate. A second method for fabricating an anode for use in sodium-ion and potassium-ion batteries mixes a metal-containing material, a hard carbon material, and binder material. A carbon-composite material is thus formed and coated on a conductive substrate. A third method for fabricating an anode for use in sodium-ion and potassium-ion batteries provides a hard carbon material having a pyrolyzed polymer coating that is mixed with a binder material to form a carbon-composite material, which is coated on a conductive substrate. Descriptions of the anodes and batteries formed by the above-described methods are also provided.
摘要:
A method is provided for fabricating a graphene-doped, carbohydrate-derived hard carbon (G-HC) composite material for alkali metal-ion batteries. The method provides graphene oxide (GO) dispersed in an aqueous solution. A carbohydrate is dissolved into the aqueous solution and subsequently the water is removed to create a precipitate. In one aspect, the carbohydrate is sucrose. The precipitate is dehydrated and exposed to a thermal treatment of less than 1200 degrees C. to carbonize the carbohydrate. The result is the formation of a graphene-doped, carbohydrate-derived hard carbon (G-HC) composite. Typically, the G-HC composite is made up of graphene in the range of 0.1 and 20% by weight (wt %), and HC in the range of 80 to 99.9 wt %. The G-HC composite has a specific surface area of less than 10 square meters per gram (m2/g). A G-HC composite suitable for use in alkali metal-ion batteries electrodes is also provided.
摘要:
An electrochemical battery is provided with an aluminum anode current collector and an antimony (Sb)-based electrochemically active material overlying the aluminum current collector. The Sb-based electrochemically active material may be pure antimony, Sb with other metal elements, or Sb with non-metal elements. For example, the Sb-based electrochemically active material may be one of the following: Sb binary or ternary alloys of sodium, silicon, tin, germanium, bismuth, selenium, tellurium, thallium, aluminum, gold, cadmium, mercury, cesium, gallium, titanium, lead, carbon, and combinations thereof. The aluminum current collector may additionally include a material such as magnesium, iron, nickel, titanium, and combinations thereof. In one aspect, the anode further composed of a coating interposed between the aluminum current collector and the Sb-based electrochemically active material. This coating may be a non-corrodible metal or a carbonaceous material. The cathode is may be composed of a number of different active materials including sodium-based Prussian Blue analogs.
摘要:
A method is provided for the self-repair of a transition metal cyanometallate (TMCM) battery electrode. The battery is made from a TMCM cathode, an anode, and an electrolyte including solution formed from a solvent and an alkali or alkaline earth salt. The electrolyte includes an additive represented as G-R-g: where G and g are independently include materials with nitrogen (N) sulfur (S), oxygen (O), or combinations of the above-recited elements; and where R is an alkene or alkane group. In response to charging and discharging the battery in a plurality of cycles, the method creates vacancies in a surface of the TMCM cathode. Then, the method fills the vacancies in the surface of the TMCM cathode with the electrolyte additive. An electrolyte and TMCM battery using the above-mentioned additives are also provided.
摘要:
A method is presented for fabricating an anode preloaded with consumable metals. The method provides a material (X), which may be one of the following materials: carbon, metals able to be electrochemically alloyed with a metal (Me), intercalation oxides, electrochemically active organic compounds, and combinations of the above-listed materials. The method loads the metal (Me) into the material (X). Typically, Me is an alkali metal, alkaline earth metal, or a combination of the two. As a result, the method forms a preloaded anode comprising Me/X for use in a battery comprising a M1YM2Z(CN)N.MH2O cathode, where M1 and M2 are transition metals. The method loads the metal (Me) into the material (X) using physical (mechanical) mixing, a chemical reaction, or an electrochemical reaction. Also provided is preloaded anode, preloaded with consumable metals.
摘要:
A method is provided for synthesizing sodium iron(II)-hexacyanoferrate(II). A Fe(CN)6 material is mixed with the first solution and either an antioxidant or a reducing agent. The Fe(CN)6 material may be either ferrocyanide ([Fe(CN)6]4−) or ferricyanide ([Fe(CN)6]3−). As a result, sodium iron(II)-hexacyanoferrate(II) (Na1+XFe[Fe(CN)6]Z.MH2O is formed, where X is less than or equal to 1, and where M is in a range between 0 and 7. In one aspect, the first solution including includes A ions, such as alkali metal ions, alkaline earth metal ions, or combinations thereof, resulting in the formation of Na1+XAYFe[Fe(CN)6]Z.MH2O, where Y is less than or equal to 1. Also provided are a Na1+XFe[Fe(CN)6]Z.MH2O battery and Na1+XFe[Fe(CN)6]Z.MH2O battery electrode.
摘要:
A battery is provided with a hexacyanometallate cathode. The battery cathode is made from hexacyanometallate particles overlying a current collector. The hexacyanometallate particles have the chemical formula AXM1MM2N(CN)Z.d[H2O]ZEO.e[H2O]BND, where A is a metal from Groups 1A, 2A, or 3A of the Periodic Table, where M1 and M2 are each a metal with 2+ or 3+ valance positions, where “ZEO” and “BND” indicate zeolitic and bound water, respectively, where d is 0, and e is greater than 0 and less than 8. The anode material may primarily be a material such as hard carbon, soft carbon, oxides, sulfides, nitrides, silicon, metals, or combinations thereof. The electrolyte is non-aqueous. A method is also provided for fabricating hexacyanometallate with no zeolitic water content in response to dehydration annealing at a temperature of greater than 120 degrees C. and less than 200 degrees C.
摘要:
A transition metal hexacyanoferrate (TMH) cathode battery is provided. The battery has a AxMn[Fe(CN)6]y.zH2O cathode, where the A cations are either alkali or alkaline-earth cations, such as sodium or potassium, where x is in the range of 1 to 2, where y is in the range of 0.5 to 1, and where z is in the range of 0 to 3.5. The AxMn[Fe(CN)6]y.zH2O has a rhombohedral crystal structure with Mn2+/3+ and Fe2+/3+ having the same reduction/oxidation potential. The battery also has an electrolyte, and anode made of an A metal, an A composite, or a material that can host A atoms. The battery has a single plateau charging curve, where a single plateau charging curve is defined as a constant charging voltage slope between 15% and 85% battery charge capacity. Fabrication methods are also provided.
摘要:
A method is provided for fabricating a cyanometallate cathode battery. The method provides a cathode of AXM1YM2Z(CN)N.MH2O, where “A” is selected from a first group of metals, and where M1 and M2 are transition metals. The method provides an anode and a metal ion-permeable membrane separating the anode from the cathode. A third electrode is also provided including “B” metal ions selected from the first group of metals. Typically, the first group of metals includes alkali and alkaline metals. The method intercalates “B” metal ions from the third electrode to the anode, the cathode, or both the anode and cathode to form a completely fabricated battery. In one aspect, a solid electrolyte interface (SEI) layer including the “B” metal ions overlies a surface of the anode, the cathode, or both the anode and cathode. A cyanometallate cathode battery is also provided.
摘要:
A method is provided for synthesizing sodium iron(II)-hexacyanoferrate(II). A Fe(CN)6 material is mixed with the first solution and either an anti-oxidant or a reducing agent. The Fe(CN)6 material may be either ferrocyanide ([Fe(CN)6]4−) or ferricyanide ([Fe(CN)6]3−). As a result, sodium iron(II)-hexacyanoferrate(II) (Na1+XFe[Fe(CN)6]Z.MH2O is formed, where X is less than or equal to 1, and where M is in a range between 0 and 7. In one aspect, the first solution including includes A ions, such as alkali metal ions, alkaline earth metal ions, or combinations thereof, resulting in the formation of Na1+XAYFe[Fe(CN)6]Z.MH2O, where Y is less than or equal to 1. Also provided are a Na1+XFe[Fe(CN)6]Z.MH2O battery and Na1+XFe[Fe(CN)6]Z.MH2O battery electrode.