摘要:
A pattern defects inspection system inspects the presence/absence of pattern defects in a photomask as an object to be inspected in which a chromium pattern and a phase shift pattern are formed together. Measurement data output from a sensor circuit for generating measurement pattern data by inspecting measurement patterns corresponding to two types of patterns formed on the object by radiating light on the object, and two identifiable design data stored in a magnetic disk unit in advance, i.e., chromium pattern design data used to form a chromium pattern and phase shift pattern design data used to form a phase shift pattern, are read out by a bit pattern generator for performing development processing. The two types of bit data obtained by the bit pattern generator are synthesized according to the same coordinate definition. The synthesized design data is compared with the measurement data by a comparator. As a result, the presence/absence of pattern defects in the object can be determined.
摘要:
First and second objects are moved relative and parallel to each other, in order to be aligned. More specifically, a first mark formed on the first object has first and second light-passing sections. A second mark formed on the second object has first and second light-reflecting sections. A light beam from a light source is directed to and reflected by the first and second light-reflecting sections of said second mark and transferred onto said first mark. An image of said first light-reflecting section is projected onto the first mark, so that the first light-passing section has a first overlapping region which overlaps a part of the inner of said first light-reflecting section. An image of said second light-reflecting section is projected onto the first mark, so that said second light-passing section has a second overlapping region which overlaps a part of the image of said second light-reflecting section. A first light beam passed through the first overlapping region and a second light beam passed through the second overlapping region are detected independently. The difference in amount between these two light beams is proportional to the positional shift between the objects. The objects are adjusted relative to each other to make the first and second light beams equal in amount, so that the objects can be aligned relative to each other. The first object is a reticle and the second object is a wafer or wafer table in the projecting and exposing apparatus.
摘要:
A device for measuring the position of an object has a light radiation mechanism for causing light to be obliquely incident on a surface of the object, a vibrating mechanism for vibrating the light incident on the surface of the object at a predetermined frequency, and a detecting mechanism for detecting light reflected by the surface of the object, generating a detection signal, and obtaining the position of the object in accordance with the detection signal.
摘要:
According to the invention an electron beam pattern transfer device with an improved alignment means is provided.A first and a second mark M.sub.1, M.sub.2 for alignment purposes are formed on the surface of the wafer and the wafer holder, respectively. The first mark M.sub.1 is formed on the wafer by conventional lithographic technique and the second mark M.sub.2 consists of a hole or a heavy metal, such as Ta or Ta.sub.2 O.sub.5. A third alignment mark M.sub.3 is provided on the photocathode mask having a position corresponding to M.sub.2 on the wafer holder and spaced a known distance L.sub.2 from an imaginary reference position M.sub.4 on the mask. The first step of the alignment process requires the detection of a relative distance L.sub.1 between the first and second marks M.sub.1, M.sub.2 by conventional detecting means, such as an optical measuring means. In the next step, the relative position of the photocathode mask and the wafer holder is adjusted so that the distance between the marks M.sub.2 and M.sub.3 is made substantially equal to the difference between the distance L.sub.1 and the known distance L.sub. 2.
摘要:
A linear bearing apparatus embodying this invention comprises a pair of mutually facing guide rails provided between two physical bodies reciprocating in the prescribed direction relative to each other; a retainer assembly disposed between the paired guide rails and formed of a plurality of rolling elements and a retainer; a pair of racks fitted to the two physical bodies; a pinion engaged with both racks; and elastic coupling means for elastically connecting the pinion to the retainer assembly and causing the retainer assembly to be shifted for the distance through which the pinion is moved.
摘要:
With a pattern inspection apparatus, image data corresponding to all patterns on an inspection target plate can be generated on the basis of scanned pattern data obtained with low-magnification optics different from ordinary inspection optics, or design pattern data. A pattern repeated area can be automatically detected from the image data. Therefore, die-to-die comparative inspection can be performed if the operator does not specify which dies to inspect. Thus, the inspection throughput can be improved.
摘要:
A pattern inspection apparatus comprises an illumination optics applying a first inspection light on a predetermined wavelength to a surface opposite to a pattern formed surface of the substrate, and a second inspection light whose wavelength is equal to the wavelength of the first inspection light to the pattern formed surface, a detector independently detecting a transmitted light from the substrate by irradiation of the first inspection light and a reflected light from the substrate by irradiation of the second inspection light, and a space separation mechanism provided in the vicinity of an optical focal plane toward the pattern formed surface, and spatially separates an irradiation area of the first and second inspection lights such that the transmitted and reflected lights from the substrate are imaged in two discrete areas separated on the optical focal plane.
摘要:
In a defect inspecting apparatus, a differential interference optical system forms a differential interference image which is produced from an optical interference of images in a predetermined direction, the images corresponding to inspecting parts of a pattern formed on a mask. A control part varies the predetermined direction so as to cause the differential interference optical system to produce another differential interference image. An image pickup sensor picks up the differential interference images in accordance with the variation of the predetermined direction. A defect detecting unit detects a defect in the pattern formed on the mask from comparing the differential interference images with reference images, respectively.
摘要:
A pattern inspection apparatus uses a die-to-database comparison method which compares detected pattern data obtained from an optical image of a pattern of a plate to be inspected with first reference pattern data obtained from designed pattern data in combination with a die-to-die comparison method which compares the detected pattern data with second reference pattern data obtained by detecting an area to be a basis for repetition. A computer detects presence of a plurality of repeated pattern areas from layout information contained in the designed pattern data, reads the arrangement, the number, the dimension and the repeated pitch of the repeated pattern areas, and automatically fetches an inspection area of the die-to-die comparison method.
摘要:
A sample analyzing apparatus includes: an irradiation system which irradiates a charged particle onto a sample having a concave portion partially on a surface thereof; a light condensing reflecting mirror which condenses luminescence obtained from the surface based on the irradiation of the charged particle; a light detector which detects the luminescence guided to the light condensing reflecting mirror; a charged particle detector which detects the charged particle reflected from the surface of the sample as a reflection charged particle; and a signal processor which controls the irradiation system to irradiate the charged particle intermittently, which obtains a shape of the sample on the basis of a detection signal outputted from the charged particle detector, and which identifies a material of the sample on the basis of an attenuation characteristic of a detection signal outputted from the light detector in a period from a time point in which the intermittent irradiation of the charged particle by the irradiation system is ended to a time point in which the intermittent irradiation of the charged particle by the irradiation system is started.