Abstract:
Provided is a nano structure composite and a method of manufacturing the same. More specifically, a nano structure composite that includes a substrate, a first layer formed of carbon nano structures on the substrate, and a second layer formed of metal oxide nano structures on the first layer, and a method of manufacturing the same are provided. When the nano structure composite according to the present invention is used, a device having a field emission characteristic higher efficiency than a conventional device can be realized, and also, the device can be manufactured at a lower temperature and at a lower pressure. Thus, manufacturing cost can be reduced and a large scale process can be performed.
Abstract:
Cell gate patterns including first portions separated from each other with a first distance and second portions separated from each other with a second distance less than the first distance, and spacers are formed both sidewalls of the pair of cell gate patterns. The spacers formed on the sidewalls of the second portions are removed using a mask pattern. Accordingly, it is possible to prevent increase of an aspect ratio of a gap between the second portions with the small distance. Since the spacers formed on the sidewalls of the second portions separated from each other with the small distance are selectively removed, it is possible to minimize the increase of the aspect ratio of the gap between the second portions. Thus, it is possible to solve various problems which are caused due to occurrence of a void.
Abstract:
A module for manufacturing a display device, a method for manufacturing the module, and a method for manufacturing a display device using the module, are provided. The module includes a solid substrate, a first flexible substrate, a second flexible substrate, and a third flexible substrate in one embodiment. The solid substrate has an upper surface and a lower surface facing to the upper surface. The first flexible substrate is on the upper surface of the solid substrate, and the second flexible substrate is on the first flexible substrate and has an opening to receive a flexible display substrate that has a display element. The third flexible substrate is on the lower surface of the solid substrate to prevent a bending of the solid substrate. Advantageously, a malfunction of pixels of the display element is decreased, and the module for manufacturing the display device may be recycled to decrease a manufacturing cost of the display device.
Abstract:
An array substrate for an in-plane switching mode liquid crystal display devices includes: a substrate; a gate line and a data line on the substrate, the gate line crossing the data line to define a pixel region; a common line parallel to the gate line; a thin film transistor connected to the gate line and the data line; a plurality of common electrodes extending from the common line, and a plurality of pixel electrodes alternating with the plurality of common electrodes, wherein a gap distance is defined as a width of a block by the adjacent common and pixel electrode in the pixel region, and at least one gap distance is different from the other gap distances.
Abstract:
A thin film transistor array panel is provided, which includes a substrate, a plurality of gate line formed on the substrate, a plurality of common electrodes having a transparent conductive layer on the substrate, a gate insulating layer covering the gate lines and the common electrodes, a plurality of semiconductor layers formed on the gate insulating layer, a plurality of data lines including a plurality of source electrodes and formed on the semiconductor layer and the gate insulating layer, a plurality of drain electrodes formed on the semiconductor layer and the gate insulating layer, and a plurality of pixel electrodes overlapping the common electrodes and connected to the drain electrodes. Because the common electrodes are made of ITON, IZON, or a-ITON, or a double layer of ITO/ITON, IZO/IZON, or a-a-ITO/a-ITON, when H2 or SiH4 are injected to form a silicon nitride (SiNX) layer on the common electrodes, the opaque metal Sn or Zn in which the metal component is reduced in the IZO, ITO, or a-ITO is not produced on the surfaces of the common electrode.
Abstract:
The present invention discloses a composition for promoting regeneration of hard tissues comprising an extract of Cortex Eucommiae. It can be applied to prevent and treat hard tissue disorders such as osteoporosis and periodontal disease followed by alveolar bone destruction. It can also be used to stimulate growth of children.
Abstract:
Cell gate patterns including first portions separated from each other with a first distance and second portions separated from each other with a second distance less than the first distance, and spacers are formed both sidewalls of the pair of cell gate patterns. The spacers formed on the sidewalls of the second portions are removed using a mask pattern. Accordingly, it is possible to prevent increase of an aspect ratio of a gap between the second portions with the small distance. Since the spacers formed on the sidewalls of the second portions separated from each other with the small distance are selectively removed, it is possible to minimize the increase of the aspect ratio of the gap between the second portions. Thus, it is possible to solve various problems which are caused due to occurrence of a void.
Abstract:
A data reception apparatus and method for generating and transmitting feedback information in a multi-antenna system using grouped antennas, and a data transmission apparatus and method for transmitting a data stream of a user according to a transmission mode selected depending on the feedback information is disclosed. The reception apparatus generates feedback information depending on maximum channel quality information, an antenna group index associated with the maximum channel quality information, rank information, and remaining channel quality information associated with the rank information, and transmits the feedback information to the transmission apparatus. The transmission apparatus selects one of a multi-user mode and a single-user mode as a transmission mode depending on the feedback information and transmits a data stream of a user via multiple antenna groups or one antenna group, according to the selected transmission mode.
Abstract:
A mobile communication apparatus including a base station and at least two mobile stations, having multiple antennas, respectively is provided. In the mobile communication apparatus, the base station restores from feedback signals transmitted from the mobile stations weight information determined in the mobile stations, generates from the restored weight information downlink control information ensuring maximum throughput to each of the mobile stations, and selects from among data of all of the mobile stations data of a desired mobile station(s) to be transmitted, based on the downlink control information. Each of each of the mobile stations has at least one mobile station antenna, the base station has at least two base station antennas, and the downlink control information includes mobile station selection information, an optimal basis matrix index, and optimal gain indices. As a result, nominal peak throughput in multi-antenna mobile communications can be efficiently achieved at low costs.
Abstract:
Methods of fabricating semiconductor devices are provided. An interlayer insulating layer is provided on a single crystalline semiconductor substrate. A single crystalline semiconductor plug is provided that extends through the interlayer insulating layer and a molding layer pattern is provided on the semiconductor substrate and the single crystalline semiconductor plug. The molding layer pattern defines an opening therein that at least partially exposes a portion of the single crystalline semiconductor plug. A single crystalline semiconductor epitaxial pattern is provided on the exposed portion of single crystalline semiconductor plug using a selective epitaxial growth technique that uses the exposed portion of the single crystalline semiconductor plug as a seed layer. A single crystalline semiconductor region is provided in the opening. The single crystalline semiconductor region includes at least a portion of the single crystalline semiconductor epitaxial pattern.