Abstract:
Embodiments provide a communication device. A device comprises at least two dissimilar network technology subsystems, at least one subsystem of which is lower priority than at least another of the dissimilar subsystems. In some embodiments, a device is able to transmit a silencing frame during a transmission window within a lower priority technology network interval. A transceiver is able to calculate a transmission window to end by at least a duration of time to complete transmission of the silencing frame prior to the beginning of next immediate string of at least one higher priority network technology subsystem interval, and transmit a silencing frame during a lower priority technology network interval during the transmission window.
Abstract:
Embodiments provide systems and methods to optimize the time when to transmit a silencing frame, and hence, improve the overall network throughput and avoid access point transmission rate fall-back mechanism having an avalanche effect during coexistence of dissimilar wireless network technologies. A device comprises at least two dissimilar network technology subsystems, at least one subsystem of which is lower priority than at least another of the dissimilar subsystems. In some embodiments, a device is able to transmit a silencing frame during a transmission window within a lower priority technology network interval. In other embodiments, a device calculates a transmission window, the transmission window to occur within a lower priority technology network interval, and transmits a silencing frame during the transmission window. In further embodiments, a device is able to calculate a transmission window to occur during a lower priority technology network interval, and transmit a silencing frame during the calculated transmission window.
Abstract:
A wireless device that includes an access point (AP) scanner, a transceiver, and a controller coupled to the AP scanner and transceiver. The AP scanner is configured to scan wireless network channels utilized by one or more APs to transmit data packets, probe responses, and beacons. The transceiver is configured to transmit one or more probe requests to the one or more APs and receive one or more probe responses and beacons from the one or more APs. The controller is configured to determine a proximate geographic position of the wireless device based on signal strength of the one or more probe responses and beacons received from the one or more APs. The controller also dynamically adapts a parameter utilized in determining the proximate geographic position of the wireless device.
Abstract:
Embodiments provide systems and methods to optimize the time when to receive transmissions from dissimilar wireless networks, and hence, improve the overall network throughput and avoid access point transmission rate fall-back mechanism having an avalanche effect during coexistence of dissimilar wireless network technologies. A receiver comprises at least two dissimilar network technology subsystems and is able to receive transmissions from dissimilar wireless network technology subsystems during a predetermined reception window.
Abstract:
A system and method for arbitrating channel access in a wireless device including co-located network transceivers are disclosed herein. A wireless device includes a first wireless transceiver and a second wireless transceiver. The first transceiver is configured for operation with a first wireless network. The second transceiver is configured for operation with a second wireless network. The wireless device further includes logic that determines which of the first and second transceivers is enabled to transmit at a given time. The logic causes the first transceiver to transmit a notification signal indicating a time period during which the second transceiver of the wireless device will perform a first wireless transaction, and during which, based on receiving the notification signal, a different wireless device performs a second wireless transaction via the second wireless network without transmitting a notification signal.
Abstract:
A device and method for controlling radio power in a wireless sensor network. A wireless sensor device includes a wireless transceiver, a white list generator, and power control logic. The wireless transceiver is configured to transmit and receive via a wireless sensor network. The white list generator configured to identify wireless sensor nodes that communicate directly with the wireless sensor device via the wireless sensor network, to identify time slots assigned for communication between the wireless sensor device and each of the identified wireless sensor nodes, and to create and maintain a list of the identified wireless sensor nodes and corresponding time slots. The power control logic is configured to power the transceiver for reception of transmissions from each identified wireless sensor node based on the identified time slots corresponding to the identified wireless sensor node provided in the list.
Abstract:
Embodiments of the invention include a method for creating probe requests. The method is used when positioning is required. A short probe request is constructed with SSID set to GPS SSID_NAME. Another method continues after a short probe response is received. It is determined if a SSID of the probe response matches the SSID of the short probe request. If it does send an ACK.
Abstract:
A network includes a parent node and at least one child node configured to communicate with the parent node via a wireless network protocol. The parent node includes a broadcast coordinator to transmit a broadcast message from the parent node to the child node at predetermined time intervals according to the wireless network protocol. A scheduler generates a scheduling packet that is communicated in the broadcast message. The scheduling packet includes a data field to instruct each child node to activate and receive data communicated from the parent node in a prescribed time slot following the broadcast message that is defined by the scheduling packet.
Abstract:
A system and method for reducing energy consumption in a wireless network. In one embodiment, a system includes a network coordinator configured to manage access to a wireless network. The network coordinator includes a controller. The controller is configured to define a channel hopping list that specifies on which channel a beacon signal is transmitted in each slot frame of the wireless network. The controller is also configured to set a number of time slots in each slot frame based on a length of the channel hopping list. The controller is further configured to transmit a first beacon signal in each slot frame on a channel specified by the channel hopping list. The number of slots in each slot frame causes the first beacon signal to be transmitted on a same channel in each slot frame.
Abstract:
Aspects of this description provide for a computer program product comprising computer executable instructions. In at least some examples, the instructions are executable by a controller to cause the controller to broadcast, in a data frame, a scan request to a node, the scan request including a certificate of the controller and a public authentication key of the controller, receive, in the data frame, a scan response from the node, the scan response including a certificate of the node and a public authentication key of the node, and perform pairing between the controller and the node based on the public authentication key of the node and a private authentication key of the controller.