Abstract:
A system and method are disclosed for monitoring environmental conditions of a perishable product. The system includes an environmental sensor configured to sense one or more environmental conditions of the perishable product and an analog integrator in communication with the environmental sensor, the analog integrator being formed on a polymer substrate and including one or more tunable components. The system also includes a comparator in communication with the analog integrator and configured to change state when an output of the analog integrator reaches a selected threshold level, and a control module in communication with the comparator and the analog integrator. The control module is configured to control the operation of the analog integrator based on an output of the comparator.
Abstract:
In a distance-measuring method comprising a distance-measuring apparatus having at least one frequency-modulatable laser source for producing chirped laser radiation. The laser radiation has radiation components with opposite chirp as time dependency of the modulated wavelengths, the simultaneous oppositeness of the frequency curve being realized via an optical delay path (3) for one of the two radiation components. The radiation produced is passed in a measuring interferometer (5) to a target (6) and parallel via a local Oscillator. After reception of the laser radiation scattered back from the target (6) and passed via the local oscillator path, the laser radiation received is converted into signals and the distance to the at least one target (6) is determined from the signals on the basis of interferometric mixing.
Abstract:
Geodetic measuring device that has an angle and distance measuring functionality for determining a position of a target object. For this purpose, the measuring device comprises a sighting device having a lens that magnifies multiplicatively, a camera sensor comprising a plurality of image recording points for recording a camera image of a field of view, a focusing optical system arranged in front of the camera sensor—wherein a first optical path is defined between the lens and the camera sensor—and an ocular. The camera sensor is connected to an electronic graphics processor for generating a display image from the camera image. The sighting device comprises an electronic graphical display component arranged in front of the ocular for visually presenting the generated display image, wherein a second optical path separated from the first optical path by the display image is defined between the display component and the ocular.
Abstract:
A laser scanner for detecting spatial surroundings comprises a stator (21), a rotor (1), mounted on the stator (21) to be rotatable about a first rotational axis, and a rotary body (2), mounted on the rotor (1) to be rotatable about a second rotational axis. A laser source (6) and a detector (7) are arranged in the rotor (1). One optical link (9) each is configured on the second rotational axis on every side of the rotary body (2) between the rotor (1) and the rotary body (2) so that emission light can be introduced by the laser source into the rotary body (2) via the first optical link (8) and reception light can be discharge from the rotary body (2) via the second optical link (9). A first rotary drive (25) drives the rotor (21) and a second rotary drive (26) drives the rotary body (2). Two goniometers (4) and evaluation electronics (5) which are connected to the laser source (6) and the detector (7) allow association of a detected distance with a corresponding direction. The rotary body (2) can have a very compact design, is completely passive and therefore does not require any power supply or transmission of signals.
Abstract:
In a method for generating a synthetic wavelength, particularly for an interferometric distance measuring setup, with a primary laser source defining a primary frequency U0 and at least a first sideband frequency U1 of the primary frequency U1, laser radiation with the first sideband frequency O1 and a corresponding first wavelength is provided wherein the first sideband frequency U1 is continuously shifted, particularly by modulating the primary laser source. The synthetic wavelength is generated by combining the first wavelength and a second wavelength which is defined by the primary laser source, particularly by superposition.
Abstract:
Embodiments of the present application relate generally to methods and apparatus for relating information in a form either machine-readable, human-readable, or some combination thereof. More particularly, although not exclusively, these embodiments are concerned with the display of information on a smart active label or smart packaging where low power and low cost are significant considerations. In some embodiments, display methods are based on electronic, electromechanical, electrochemical, and combinations thereof configured or manufactured using printing techniques, micro-electromechanical system (MEMS) techniques, or combinations thereof to achieve high reliability, low cost, and low activation energies. The embodiments described above can provide an accurate and low-cost apparatus and method for relating the information obtained by smart active labels and smart packages.
Abstract:
A system and method are disclosed for monitoring environmental conditions of a perishable product. The system includes an environmental sensor configured to sense one or more environmental conditions of the perishable product and an analog integrator in communication with the environmental sensor, the analog integrator being formed on a polymer substrate and including one or more tunable components. The system also includes a comparator in communication with the analog integrator and configured to change state when an output of the analog integrator reaches a selected threshold level, and a control module in communication with the comparator and the analog integrator. The control module is configured to control the operation of the analog integrator based on an output of the comparator.
Abstract:
A method of manipulating a laser source, includes analyzing an optical signal generated by the laser source, evaluating on the basis of the analysis an actual indicator corresponding with an actual value of a tuning velocity of the laser source, comparing the actual indicator with a desired indicator corresponding with a desired value of the tuning velocity to detect a deviation of the actual value of the tuning velocity from the desired value of the tuning velocity, and compensating the deviation if any by manipulating at least one parameter influencing the signal of the laser source.
Abstract:
An electronic assembly may be contained in a label that performs time-temperature integration (TTI) and indicates that time and/or temperature levels have been reached that may compromise the quality, shelf life, or safety of the item to which the label is affixed. The label may be used on a wide variety of objects that require careful handling in terms of temperature and/or time elapsed before use. The labeling system includes circuitry that measures and calculates, and indicator(s) that signal that the time has come for discounted sale, and, later, that the time has come for disposal rather than sale.
Abstract:
The present invention relates to an apparatus and to a method of interferometric determination of a transfer function of a DUT (A, B), comprising the steps of detecting at least one interferogram of the DUT (A, B) and using a Hilbert transformation to evaluate transfer functions hij of the DUT (A, B) on the basis of the detected interferogram.
Abstract translation:本发明涉及DUT(A,B)的传递函数的干涉测定的装置和方法,包括以下步骤:检测DUT(A,B)的至少一个干涉图,并使用希尔伯特变换 基于检测到的干涉图来评估DUT(A,B)的传递函数h ij ij。