摘要:
A hand-supportable area-type planar laser illumination and imaging (PLIIM) based device comprising an area-type image formation and detection (IFD) module having a 2-D array of image detection elements. The IFD module also includes image formation optics having a 3-D field of view (FOV). The 3-D FOV focuses a 2-D image of said object onto the 2-D array of image detection elements. A pair of planar laser illumination arrays (PLIAs) are arranged on opposite sides of the linear image formation and detection module, and produce a plurality of spatially-incoherent planar laser illumination beam (PLIB) components that are optically combined with respect to other PLIB components so as to produce a composite PLIB. The composite PLIB is automatically swept through the 3-D field of view so that the composite PLIB is arranged in a coplanar relationship with at least a portion of the 3-D FOV.
摘要:
Novel methods are disclosed for designing and constructing miniature optical systems and devices employing light diffractive optical elements (DOEs) for modifying the size and shape of laser beams produced from a commercial-grade laser diodes, over an extended range hitherto unachievable using conventional techniques. The systems and devices of the present invention have uses in a wide range of applications, including laser scanning, optical-based information storage, medical and analytical instrumentation, and the like. In the illustrative embodiments, various techniques are disclosed for implementing the DOEs as holographic optical elements (HOEs), computer-generated holograms (CGHs), as well as other diffractive optical elements.
摘要:
Novel methods are disclosed for designing and constructing miniature optical systems and devices employing light diffractive optical elements (DOEs) for modifying the size and shape of laser beams produced from a commercial-grade laser diodes, over an extended range hitherto unachievable using conventional techniques. The systems and devices of the present invention have uses in a wide range of applications, including laser scanning, optical-based information storage, medical and analytical instrumentation, and the like. In the illustrative embodiments, various techniques are disclosed for implementing the DOEs as holographic optical elements (HOEs), computer-generated holograms (CGHs), as well as other diffractive optical elements.
摘要:
A fully automated package identification and measuring system, in which an omni-directional laser scanning systems are used to read bar codes on packages entering the tunnel, while a package dimensioning subsystem is used to capture information about the package prior to entry into the tunnel. Mathematical models are created on a real-time basis for the geometry of the package and the position of the laser scanning beam used to read the bar code symbol thereon. The mathematical models are analyzed to determine if collected and queued package identification data is spatially and/or temporally correlated with package measurement data using vector-based ray-tracing methods, homogeneous transformations, and object-oriented decision logic so as to enable simultaneous tracking of multiple packages being transported through the scanning tunnel.
摘要:
A fully automated package identification and measuring system, in which an omni-directional laser scanning system are used to read bar codes on packages entering the tunnel, while a package dimensioning subsystem is used to capture information about the package prior to entry into the tunnel. Mathematical models are created on a real-time basis for the geometry of the package and the position of the laser scanning beam used to read the bar code symbol thereon. The mathematical models are analyzed to determine if collected and queued package identification data is spatially and/or temporally correlated with package measurement data using vector-based ray-tracing methods, homogeneous transformations, and object-oriented decision logic so as to enable simultaneous tracking of multiple packages being transported through the scanning tunnel.
摘要:
Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system. Preferably, each planar laser illumination beam component is focused so that the minimum beam width thereof occurs at a point or plane which is the farthest or maximum object distance at which the system is designed to acquire images, thereby compensating for decreases in the power density of the incident planar laser illumination beam due to the fact that the width of the planar laser illumination beam increases in length for increasing object distances away from the imaging optics. Advanced high-resolution wavefront control methods and devices are disclosed for use with the PLIIM-based systems in order to reduce the power of speckle-noise patterns observed at the image detections thereof. By virtue of the present invention, it is now possible to use both VLDs and high-speed CCD-type image detectors in conveyor, hand-held and hold-under type imaging applications alike, enjoying the advantages and benefits that each such technology has to offer, while avoiding the shortcomings and drawbacks hitherto associated therewith.
摘要:
Illumination apparatus includes a light source which directs a polarized source beam in a downstream direction along an optical axis and desirably focuses the beam. A polarization-altering element downstream from the source such as a birefringent plate alters the polarization in a portion or portions of the source beam, so that the altered beam includes portions having different polarization directions. The altered beam passes downstream through a polarization-selective filter. The output beam from the polarization-selective filter can include either portion depending on the orientation of the filter. The arrangement can be used to provide a spot of a given size and shape at the focal location in a scanner such as a bar code scanner. The size and depth of field of the spot can be varied dynamically during operation.
摘要:
Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system. Preferably, each planar laser illumination beam component is focused so that the minimum beam width thereof occurs at a point or plane which is the farthest or maximum object distance at which the system is designed to acquire images, thereby compensating for decreases in the power density of the incident planar laser illumination beam due to the fact that the width of the planar laser illumination beam increases in length for increasing object distances away from the imaging optics. Advanced high-resolution wavefront control methods and devices are disclosed for use with the PLIIM-based systems in order to reduce the power of speckle-noise patterns observed at the image detections thereof. By virtue of the present invention, it is now possible to use both VLDs and high-speed CCD-type image detectors in conveyor, hand-held and hold-under type imaging applications alike, enjoying the advantages and benefits that each such technology has to offer, while avoiding the shortcomings and drawbacks hitherto associated therewith.
摘要:
Illumination apparatus includes a light source which directs a polarized source beam in a downstream direction along an optical axis and desirably focuses the beam. A polarization-altering element downstream from the source alters the polarization in a portion or portions of the source beam, so that the altered beam includes portions having different polarization directions. The altered beam passes downstream through a polarization-selective filter. The output beam from the polarization-selective filter can include either portion depending on the orientation of the filter. The arrangement can be used to provide a spot of a given size and shape at the focal location in a scanner such as a bar code scanner. The size and depth of field of the spot can be varied dynamically during operation.
摘要:
Method of scanning information-bearing elements by providing a scanning beam focused to a spot at a focal location, moving said scanning beam relative to information-bearing elements, detecting light reflected from said information-bearing elements to provide a signal representing the information carried by such element, and repeatedly varying the spot size and depth of field of the focused beam during said moving and detecting steps so as to vary the beam characteristics between a first condition in which the beam has a small spot size at said focus but a small depth of field and a second condition in which the beam has a larger spot size at said focus but a larger depth of field.