Abstract:
An embodiment of a method includes retaining a first workpiece and a second workpiece selectively on a workpiece fixture disposed within a deposition chamber. The workpiece fixture includes tooling including a first workpiece holder, a second workpiece holder, and a first hollow wall. The first workpiece is separated from the second workpiece using the first hollow wall. Energy is selectively applied and directed within the deposition chamber, from an energy source toward a first crucible, the first crucible including a plurality of walls defining an upper recess contiguous with, and disposed directly above a first lower recess, at least the upper recess open to an interior of the deposition chamber. During the step of selectively applying and directing energy, a gas valve is controlled to maintain a partial vacuum in the deposition chamber of greater than 2 Pa to control a size and overlap of at least one coating zone formed around each of the at least one workpiece.
Abstract:
A method includes forming a multi-layered ceramic barrier coating under a chamber pressure of greater than 1 Pascals. In the method, low- and high-dopant ceramic materials are evaporated using input evaporating energies that fall, respectively, above and below a threshold for depositing the materials in a columnar microstructure (low-dopant) and in a branched columnar microstructure (high-dopant).
Abstract:
A coating system for coating a part (10), such as a turbine blade or vane, has a mask (14) positioned adjacent to a first portion (16) of the part (10) to be coated and a mechanism (30) for moving the mask (14) relative to the part (10). The mechanism (30) may be a gear mechanism or a magnetic mechanism.
Abstract:
An embodiment of an apparatus includes a deposition chamber, a workpiece fixture including a first workpiece holder, and a first crucible. The workpiece holder is configured to retain a first workpiece in the deposition chamber. The first crucible includes a body including at least one wall defining a non-circular upper recess with a base. A first lower recess is formed below the base of the upper recess and configured to retain a first primary coating feedstock therein.
Abstract:
A method for use in a physical vapor deposition coating process includes depositing a ceramic coating material from a plume onto at least one substrate to form a ceramic coating thereon, and during the deposition, rotating the at least one substrate at rotational speed selected with respect to deposition rate of the ceramic coating material onto the at least one substrate.
Abstract:
The present disclosure relates to methods for coating gas turbine engine components, such as combustor panels. In one embodiment, a method includes forming a first layer to a substrate to form a bond coat, and forming a second layer over the first layer. The second layer may be formed by a material having a thermal conductivity within the range of 4.45 to 30 Kcal/(m hoC). According to one or more embodiments, the first layer may be formed by at least one of a high velocity oxy-fuel (HVOF) source, an electric-arc source and low pressure plasma spraying. According to one or more embodiments, the second layer, and as a result a thermal barrier coating, may be formed by at least one of air plasma spraying, suspension plasma spraying, and electronic beam physical vapor deposition.