Abstract:
Embodiments relate to polycrystalline diamond compacts (“PDCs”) that are less susceptible to liquid metal embrittlement damage due to the use of at least one transition layer between a polycrystalline diamond (“PCD”) layer and a substrate. In an embodiment, a PDC includes a PCD layer, a cemented carbide substrate, and at least one transition layer bonded to the substrate and the PCD layer. The at least one transition layer is formulated with a coefficient of thermal expansion (“CTE”) that is less than a CTE of the substrate and greater than a CTE of the PCD layer. At least a portion of the PCD layer includes diamond grains defining interstitial regions and a metal-solvent catalyst occupying at least a portion of the interstitial regions. The diamond grains and the catalyst collectively exhibit a coercivity of about 115 Oersteds or more and a specific magnetic saturation of about 15 Gauss·cm3/grams or less.
Abstract:
Embodiments relate to methods of fabricating PCD materials by subjecting a mixture that exhibits a broad diamond particle size distribution to an HPHT process, PCD materials so-formed, and PDCs including a polycrystalline diamond table comprising such PCD materials. In an embodiment, a PCD material includes a plurality of bonded diamond grains that exhibit a substantially unimodal diamond grain size distribution characterized, at least in part, by a parameter θ that is less than about 1.0. θ = x 6 · σ , where x is the average grain size of the substantially unimodal diamond grain size distribution, and σ is the standard deviation of the substantially unimodal diamond grain size distribution.
Abstract translation:实施方案涉及通过使表现出宽金刚石粒度分布的混合物经受HPHT方法,所形成的PCD材料和包括包含这种PCD材料的多晶金刚石台的PDC来制造PCD材料的方法。 在一个实施方案中,PCD材料包括多个结合的金刚石晶粒,其表现出基本上单峰金刚石晶粒尺寸分布,其至少部分地由小于约1.0的参数θ表征。 θ= x 6·sigma,其中x是基本上单峰金刚石晶粒尺寸分布的平均晶粒尺寸,σ是基本上单峰金刚石晶粒尺寸分布的标准偏差。
Abstract:
Embodiments disclosed herein are directed to a superabrasive compact including one or more superabrasive cutting portions or segments, rotary drill bits including one or more superabrasive compacts, and related methods (e.g., methods of fabricating and/or operating the superabrasive compacts). For example, the superabrasive compact may include polycrystalline diamond that may form at least a portion of a working surface of the superabrasive compact.
Abstract:
A method of processing a polycrystalline diamond element includes forming a protective layer over a selected portion of a polycrystalline diamond element, the polycrystalline diamond element having a polycrystalline diamond table that includes a superabrasive face, a superabrasive side surface, and a chamfer extending between the superabrasive face and the superabrasive side surface. A portion of the superabrasive side surface is covered by the protective layer and the protective layer is not formed over the chamfer. The method includes exposing at least a portion of the polycrystalline diamond element to a leaching solution. A polycrystalline diamond element has a polycrystalline diamond table that includes a leached volume extending from the superabrasive face to a portion of the chamfer proximate to the superabrasive side surface, and the leached volume does not substantially extend along the superabrasive side surface.
Abstract:
In an embodiment, a method of fabricating a polycrystalline diamond compact is disclosed. The method includes sintering a plurality of diamond particles in the presence of a metal-solvent catalyst to form a polycrystalline diamond body; leaching the polycrystalline diamond body to at least partially remove the metal-solvent catalyst therefrom, thereby forming an at least partially leached polycrystalline diamond body; and subjecting an assembly of the at least partially leached polycrystalline diamond body and a cemented carbide substrate to a high-pressure/high-temperature process at a pressure to infiltrate the at least partially leached polycrystalline diamond body with an infiltrant. The pressure of the high-pressure/high-temperature process is less than that employed in the act of sintering of the plurality of diamond particles.
Abstract:
A cutting element assembly for use on a rotary drill bit for forming a borehole in a subterranean formation. A cutting element assembly includes a cutting element having a substrate. The cutting element assembly additionally includes a superabrasive material bonded to the substrate. The substrate extends from an end surface to a back surface. A base member is also coupled to the back surface of the substrate. Additionally, a recess is defined in the base member and a structural element is coupled to the base member. The cutting element assembly also includes a biasing element configured to selectively bias the structural element.
Abstract:
A superabrasive compact (e.g., a polycrystalline diamond compact) including a substrate and at least one feature for reducing the susceptibility of the substrate to liquid metal embrittlement during brazing operations is disclosed. The superabrasive compact may include a region between the substrate and a superabrasive table in which residual tensile stresses are located. The at least one feature may reduce the susceptibility of the substrate to liquid metal embrittlement by altering the stress state and/or substantially preventing the substrate from being wetted at the residual stress region.
Abstract:
Embodiments of the invention relate to methods of making articles having portions of polycrystalline diamond bonded to a surface of a substrate and polycrystalline diamond compacts made using the same. In an embodiment, a molding technique is disclosed for forming cutting tools comprising polycrystalline diamond portions bonded to the outer surface of a substrate.
Abstract:
Embodiments of the invention relate to thermally-stable polycrystalline diamond (“PCD”) elements, polycrystalline diamond compacts (“PDCs”), and methods of fabricating such PCD elements and PDCs. In an embodiment, a method of fabricating a thermally-stable PCD element includes providing an at least partially leached PCD body including a plurality of interstitial regions, and infiltrating at least a portion of the interstitial regions of the at least partially leached PCD body with at least a portion of an infiltrant material. The infiltrant material may include at least one member chosen from the group of glass, silicone, and a ceramic having a negative coefficient of thermal expansion.
Abstract:
Embodiments of the invention relate to methods of fabricating a polycrystalline diamond compacts and applications for such polycrystalline diamond compacts. In an embodiment, a method of fabricating a polycrystalline diamond compact includes at least saturating a sintering aid material with non-diamond carbon to form a carbon-saturated sintering aid material and sintering a plurality of diamond particles in the presence of the carbon-saturated sintering aid particles to form a polycrystalline diamond table.