Abstract:
A transistor includes: a semiconductor substrate; a channel region arranged on the semiconductor substrate; a source and a drain respectively arranged on either side of the channel region; and a conductive nano tube gate arranged on the semiconductor substrate to transverse the channel region between the source and the drain. Its method of manufacture includes: arranging a conductive nano tube on a surface of a semiconductor substrate; defining source and drain regions having predetermined sizes and traversing the nano tube; forming a metal layer on the source and drain regions; removing a portion of the metal layer formed on the nano tube to respectively form source and drain electrodes separated from the metal layer on either side of the nano tube; and doping a channel region below the nano tube arranged between the source and drain electrodes by ion-implanting.
Abstract:
A field emission type backlight unit and a method of manufacturing the same. The field emission type backlight unit includes a lower substrate, a plurality of cathode electrodes formed on the lower substrate, a plurality of insulating layers formed in a line shape on the lower substrate and the cathode electrodes, a plurality of gate electrodes formed on the insulating layers, and at least one emitter formed of an electron emission material on each cathode electrode between the insulating layers.
Abstract:
A field emission display device and a field emission type backlight device having a sealing structure for a vacuum exhaust are provided. The field emission display device is constructed with a cathode substrate and an anode substrate attached to each other and facing each other and a vacuum-exhausted panel space formed therebetween to generated a visual image. Also, the field emission display device is constructed with a sealing member disposed along edges of the cathode substrate and the anode substrate to seal the panel space. At least one inlet exposed to the panel space and an exhaust passage through which the inlet communicates with an outside of the field emission display device are formed in the sealing member. The field emission display device and the field emission type backlight device according to the present invention has a reduced number of manufacturing processes and is suitable for a compact, slim and lightweight design, and a large screen by having the sealing structure for the vacuum exhaust.
Abstract:
A nanowire electronmechanical device with an improved structure and a method of fabricating the same prevent burning of two nanowires which are switched due to contact with each other while providing stable on-off switching characteristics. The nanowire electromechanical device comprises: an insulating substrate; first and third electrodes spaced apart from each other on the insulating substrate, wherein a negative voltage and a positive voltage, varying within a predetermined range, are applied to the first and third electrodes, respectively; a second electrode interposed between the first and third electrodes, a constant positive voltage, lower than the voltage applied to the third electrode, being applied to the second electrode; a first nanowire vertically grown on the first electrode and charged with a negative charge; a second nanowire vertically grown on the second electrode and charged with a positive charge; and a third nanowire vertically grown on the third electrode and charged with an amount of positive charge corresponding to the magnitude of the varying voltage applied to the third electrode.
Abstract:
A carbon nanotube emitter and its fabrication method, a Field Emission Device (FED) using the carbon nanotube emitter and its fabrication method include a carbon nanotube emitter having a plurality of first carbon nanotubes arranged on a substrate and in parallel with the substrate, and a plurality of the second carbon nanotubes arranged on a surface of the first carbon nanotubes.
Abstract:
A method of forming a carbon nanotube emitter includes: forming a carbon nanotube composite on a substrate with a predetermined shape, coating surface treating material in a liquid phase on the carbon nanotube composite and drying the surface treating material, and peeling the dried surface treating material off of the carbon nanotube composite.