摘要:
A method is disclosed for making a titanium-based compound film of a poly-silicon solar cell. In the method, a ceramic substrate is made of aluminum oxide. The ceramic substrate is coated with a titanium film in an e-gun evaporation system. Dichlorosilane is provided on the titanium film by atmospheric pressure chemical vapor deposition. A titanium-based compound film is formed on the ceramic substrate.
摘要:
A method is disclosed to make a multi-crystalline silicon film of a solar cell. The method includes the step of providing a ceramic substrate, the step of providing a titanium-based film on the ceramic substrate, the step of providing a p+-type back surface field layer on the titanium-based film, the step of providing a p−-type light-soaking layer on the p+-type back surface field layer and the step of conducting n+-type diffusive deposition of phosphine on the p−-type light-soaking layer based on atmospheric pressure chemical vapor deposition, thus forming an n+-type emitter on the p−-type light-soaking layer.
摘要:
Dichlorosilane and diborane are deposited on the titanium-based alloy film to grow a p+ type back surface field film. The temperature is raised to grow a p− type light-soaking film on the p+ type back surface field film. Phosphine is deposited on the p− type light-soaking film to form an n+ type emitter. Thus, an n+-p−-p+ laminate is provided on the titanium-based alloy film. SiCNO:Ar plasma is used to passivate the n+-p−-p+ laminate, thus forming an anti-reflection film of SiCN/SiO2 on the n+ type emitter. The n+-p−-p+ laminate is etched in a patterned mask process. A p− type ohmic contact is formed on the titanium-based alloy film. The anti-reflection film is etched in a patterned mask process. The n+ type emitter is coated with a titanium/palladium/silver alloy film that is annealed in hydrogen. An n− type ohmic contact is formed on the n+ type emitter.
摘要:
A method is disclosed for making a multi-crystalline silicon film of a solar cell. In the method, a titanium-based film is coated on a ceramic substrate. A back surface field layer is coated on the titanium-based film via providing dichlorosilane and diborane in an atmospheric pressure chemical vapor deposition process at a first temperature. A light-soaking layer is coated on the back surface field layer via providing more dichlorosilane and diborane in the atmospheric pressure chemical vapor deposition process at a second temperature higher than the first temperature.
摘要:
A phase locked loop includes a voltage controlled oscillator operable to generate an output signal corresponding to a reference signal in response to a control voltage signal outputted by a filter in response to a current signal, and a variable frequency divider operable to perform frequency division on the output signal using a variable divisor so as to generate a divided feedback signal. A charge pump outputs the current signal in response to a phase detecting output from a phase/frequency detector indicating phases of the divided feedback signal and the reference signal. A phase error comparator outputs, in accordance with the phase detecting output, a digital output indicating whether the divided feedback signal lags or leads the reference signal and further indicating a phase difference between the divided feedback signal and the reference signal. The variable frequency divider determines a value of the variable divisor in accordance with the digital output to reduce the phase difference between the divided feedback signal and the reference signal .
摘要:
A method for deciding the maximum luminosity of a monitor is provided. The monitor is used for displaying a target image including a plurality of target pixels. Each of the target pixels has a target gray level. The target image and each adjacent image respectively has a maximum gray level. The monitor is capable of displaying M default gray levels. The method first generates a reference gray level (R) for the target image selectively based on the maximum gray levels. Then, a target control voltage corresponding to R is selected from a look-up table. A gain is generated based on R and M. Respectively multiplying each of the target gray levels by the gain can generate a plurality of new gray levels. At last, the method sets the target control voltage as the control voltage of the monitor and displays the target image with the new gray levels.
摘要:
The invention provides a Gamma conversion system applied on a source of image pixel data. Each image pixel data in the source of image pixel data has an M-bit pixel value with a first Gamma exponent. The Gamma conversion system comprises a storage module, a processing module, and a selecting module. The storage module therein stores I look-up tables. The processing module is respectively coupled to the source of image pixel data and the storage module, and the processing module comprises I converting modules, each of the converting modules corresponds to one look-up table. The selecting module is coupled to the source of image pixel data and the processing module respectively, and generates a selection signal according to the M-bit pixel value. In response to the selection signal, the processing module assigns one of the converting modules to convert the M-bit pixel value into an N-bit pixel value with a second Gamma exponent according to the look-up table corresponding to the assigned converting module.
摘要:
A method for deciding the maximum luminosity of a monitor is provided. The monitor is used for displaying a target image including a plurality of target pixels. Each of the target pixels has a target gray level. The target image and each adjacent image respectively has a maximum gray level. The monitor is capable of displaying M default gray levels. The method first generates a reference gray level (R) for the target image selectively based on the maximum gray levels. Then, a target control voltage corresponding to R is selected from a look-up table. A gain is generated based on R and M. Respectively multiplying each of the target gray levels by the gain can generate a plurality of new gray levels. At last, the method sets the target control voltage as the control voltage of the monitor and displays the target image with the new gray levels.