Abstract:
Apparatuses, systems, and methods for enhancement of Wi-Fi calling for DSDS user equipment devices (UEs). The UE may register a first connection supported by a first SIM with IMS for VoWiFi based on a determination to prefer VoWiFi for the first SIM. The first SIM may be associated with a first subscription to a first RAN. The UE may include a second SIM that may be associated with a second subscription to a second RAN. The UE may register a second connection associated with the second SIM with the IMS for VoWiFi and/or VoLTE and initiate/receive, via the first connection supported by the first SIM, a VoWiFi call. A recommendation to handover the VoWiFi call from Wi-Fi to cellular data may be received and, based, at least in part, on the recommendation, the UE may register a second connection associated with the second SIM for IWLAN over cellular data.
Abstract:
Apparatus and methods to support authentication failure handling by network elements and by a wireless communication device when attempting access to services through non-cellular wireless networks by the wireless communication device are disclosed. Error messages received from evolved packet core (EPC) network elements, such as an authentication, authorization, and accounting (AAA) server, are mapped to failure messages provided to wireless communication devices by internetworking equipment, such as an evolved packet data gateway (ePDG). The wireless communication device determines a failures cause based on the failure messages and disallows retry attempts until select criteria are satisfied.
Abstract:
Embodiments for performing a fast return to Wi-Fi following completion of a cellular voice call are provided. These embodiments include detecting that a device has switched from communicating over a Wi-Fi interface to communicating over a cellular interface; determining the earliest time that the device can switch back to Wi-Fi; and instituting the switch. In some embodiments, the process of performing a fast return to Wi-Fi is carried out by devices having small form factors, such as smartwatches and other wearables, which may be susceptible to coexistence and peak power problems. The fast return to Wi-Fi embodiments disclosed herein allow a device to perform a voice call over a cellular interface when Wi-Fi calling is not available, and switch over to a Wi-Fi interface immediately upon completion of the voice call in order to conserve battery life, achieve higher data speeds, and avoid high costs associated with cellular data transmissions.
Abstract:
Apparatus and methods to support location specific control to allow and/or disallow access to services through untrusted wireless networks by a wireless communication device are disclosed. One or more network elements obtain a location of the wireless communication device and selectively allow and/or disallow access to one or more cellular network services and/or one or more access point names (APNs) based on the location of the wireless communication device when connecting through an untrusted wireless network.
Abstract:
This disclosure relates to inter radio access technology management for audiovisual calls. Wireless link availability and suitability for an audiovisual call may be evaluated for each of a first radio access technology and a second radio access technology. One or more wireless links on which to establish an audiovisual call may be selected based on the evaluations. The audiovisual call may be established on the selected wireless link(s). Wireless link availability and suitability for an audiovisual call may be monitored during the audiovisual call and decisions on whether to perform handover to a different wireless link and/or media duplication on multiple wireless links may be made based on the suitability for an audiovisual call of available wireless links.
Abstract:
In some embodiments, a cellular baseband processor communicates wirelessly and reports cellular metrics for both a first cellular RAT and a second cellular RAT. The cellular baseband processor may be configured to tune away, for a time interval, from the first cellular RAT to monitor for communications on the second cellular RAT. In some embodiments, the cellular baseband processor is configured not to report cellular metrics during the time interval to prevent a RAT manager from setting up a connection for voice calls on a WLAN RAT during the time interval. In some embodiments another processing element the RAT manager is configured to ignore cellular metrics from the cellular baseband processor during the interval. This may reduce signal load and power consumption, in some embodiments.
Abstract:
In some embodiments, a user equipment device (UE) implements techniques for avoiding conflicts between UE-initiated and network-initiated handovers. In one embodiment, one or more first radios are configured to perform cellular communication using different first and second cellular radio access technologies (RATs) and a second radio is configured to perform wireless communication using a short-range RAT. In one embodiment, the mobile device is configured to, while communicating using the first cellular RAT, in response to determining that an inter-RAT handover to the short-range RAT is likely to be initiated or has been initiated by the at least one processor, delay sending a measurement report to the cellular base station. This delay may avoid conflict between handovers initiated by the network in response to the measurement report (e.g., from the first cellular RAT to the second cellular RAT) and the inter-RAT handover.
Abstract:
A method for seamless session mobility on wireless communication device including a first physical interface and a second physical interface is provided. The method can include a wireless communication device anchoring a data session for an application to a logical interface associated with the first physical interface. The method can further include the wireless communication device routing data for the data session sent to the logical interface by the application to the second physical interface for transmission via the second physical interface in an instance in which the wireless communication device has an active connection to a radio access network via the second physical interface.
Abstract:
In order to improve the quality of a telephone call communicated over a wireless local area network (WLAN), an electronic device (such as a cellular telephone) may obtain one or more performance metrics based on communication with another electronic device (such as an access point) via a connection in the WLAN. For example, the electronic device may receive the one or more performance metrics from the other electronic device and/or may determine the one or more performance metrics based on the performance of the communication. Then, the electronic device may compare the one or more performance metrics with an interference criterion. If the interference criterion is met, the electronic device may perform a remedial action, such as selectively discontinuing use of the WLAN to communicate the telephone call for a time interval. Otherwise, the electronic device may continue using the WLAN to communicate the telephone call.
Abstract:
Wireless devices, networks and methods may operate to have a wireless device cause a base station to trigger voice call continuity handovers responsive to the quality of the cellular radio link in addition to the base station triggering such handovers based on location or mobility. Furthermore, wireless communication devices may also perform monitoring of multiple buffers operating within the wireless communication device and associated with different respective communication layers, in addition to monitoring the quality of the cellular radio link, to perform intelligent dropping/discarding and/or scheduling of packets at the wireless communications device. Any one or more of these features may improve the ability of the wireless communications device to achieve stated Voice over Long Term Evolution (VoLTE) performance benchmarks in the context of the realities of current VoLTE networks.