Abstract:
There is described a method and a system for generating a non-imaged plane view of an anatomical part for assisting a surgery. A model of the anatomical part is provided, comprising features and dimension parameters. A first plane view of the anatomical part is obtained. Features are identified in the first plane view. The dimension parameters are measured from the features identified. The model is displayed in the non-imaged plane view such that the model is dimensioned with the measured dimension parameters. A position and orientation of a surgical object is then tracked relative to the anatomical part while a user navigates the surgical object in space and a representation of the surgical object to be overlaid in register on at least one the first plane view and/or the non-imaged view is generated.
Abstract:
A computer-assisted surgery system for guiding alterations to a bone, comprises a trackable member secured to the bone. The trackable member has a first inertial sensor unit producing orientation-based data. A positioning block is secured to the bone, and is adjustable once the positioning block is secured to the bone to be used to guide tools in altering the bone. The positioning block has a second inertial sensor unit producing orientation-based data. A processing system providing an orientation reference associating the bone to the trackable member comprises a signal interpreter for determining an orientation of the trackable member and of the positioning block. A parameter calculator calculates alteration parameters related to an actual orientation of the positioning block with respect to the bone.
Abstract:
A tracking system is provided for tracking an objects. A first and a second trackable member each have an inertial sensor unit producing at least orientation-based data. A processing unit receives the orientation-based data from the trackable members. The processing unit has an orientation calculator calculating an orientation of the second trackable member with respect to the first trackable member from the orientation-based data of both said trackable members, whereby the processing unit calculates an orientation of the objects. A method is also provided.
Abstract:
An assembly of a patient specific instrument and tracking system comprises a patient specific instrument having a body with a patient specific contact surface negatively shaped relative to a corresponding surface of a bone for complementary contact therewith. An inertial sensor unit with a preset orientation is connected to the body in a planned connection configuration, such that a geometrical relation between the contact surface and the inertial sensor unit is known. A tracking system has a tracking processor connected to the inertial sensor unit, a user interface, and bone orientation data related to the patient specific contact surface, the tracking processor producing orientation tracking data for the bone using the geometrical relation and the bone orientation data when the preset orientation of the inertial sensor unit is initialized, to output the orientation tracking data on the user interface.
Abstract:
A tool for digitizing a mechanical axis of a tibia using a computer-assisted surgery system is described. The tool includes upper and lower mounting ends interconnected by an alignment rod extending therebetween. The upper mounting end is releasably fastenable to an upper reference point on a tibial plateau and the lower mounting end includes a self-centering malleoli engaging mechanism having opposed caliper arms displaceable in a common plane relative to each other for clamping engagement with the medial and lateral malleoli of the ankle. At least one trackable member is mounted to the alignment rod of the tool and is in communication with the computer assisted surgery system for providing at least orientation information of the alignment rod. The mechanical axis of the tibia is parallel to the alignment rod and extends between the upper and lower reference points when the tool is mounted on the tibia.
Abstract:
A computer-assisted surgery system comprises instruments adapted to be used to perform tasks related to surgery. A reference device is in a fixed relation to a bone. A rotating magnet creates a magnetic field plane, the rotating magnet being connected to one of the instrument and the reference device. A magnetometer on the other of the instrument and the reference device produces signals as a function of at least its orientation relative to the magnetic field plane. A processing unit tracks said orientation of the instrument relative to the bone using said signals from the magnetometer subjected to the magnetic field plane.
Abstract:
A computer-assisted surgery system for planning/guiding alterations to a bone in surgery, comprises a trackable member adapted to be secured to the bone. The trackable member has a first inertial sensor unit producing orientation-based data for at least two degrees of freedom in orientation of the trackable member A positioning block is adapted to be secured to the bone, with at least an orientation of the positioning block being adjustable once the positioning block is secured to the bone to reach a selected orientation at which the positioning block is used to guide tools in altering the bone. The positioning block has a second inertial sensor unit producing orientation-based data for at least two degrees of freedom in orientation of the positioning block. A processing system providing an orientation reference associating the bone to the trackable member comprises a signal interpreter for determining an orientation of the trackable member and of the positioning block from the orientation-based data. A parameter calculator calculates alteration parameters related to an actual orientation of the positioning block with respect to the bone as a function of the orientation reference and of the orientation of the positioning block.
Abstract:
A CAS system and method comprises a first reference in fixed relation with the pelvis and a registration tool. A sensor apparatus tracks the first reference and tool. A controller unit receives tracking data for the first reference and tool. A calculator tracks the pelvic frame of reference, and the tool to produce a femoral frame of reference at two sequential operative steps. A reference orientation adjustor receives tracking data for the pelvic frame of reference to orient the femoral frame of reference in a reference orientation with respect to the pelvic frame of reference, and to produce a reference adjustment value as a function of the reference orientation. A surgical parameter calculator receives tracking data from the tool to calculate surgical parameters as a function of the reference adjustment value.
Abstract:
A method and system (10) for the installation of a cutting guide (60) on a bone element (33) in orthopedic computer assisted surgery is provided. The method includes positioning a drill guide (30) against a distal end of the bone element (33), determining at least two pin locations on one of a medial (31) and a lateral side of the bone element (33), fastening locating pins (42) to the bone element (33) at the determined pin locations, removing the drill guide (30) and installing a CAS bone reference (20) in its place on the same locating pins (42), and subsequently mounting the cutting guide (60) to the same locating pins (42).
Abstract:
The present application describes a method and system for determining a time delay between a transmission and a reception of an RF signal in a noisy environment. The method comprises: transmitting the RF signal; shifting a phase of the RF signal after a first time period of the transmitting of the RF signal, starting at a known transition time; receiving a received RF signal comprising a received phase shift corresponding to the shifting of the phase of the transmitted RF signal, the received phase shift occurring at a receive transition time equivalent to a sum of the time delay and the known transition time; determining the receive transition time by detecting a time corresponding to the received phase shift; and calculating the time delay using the receive transition time and the known transition time.