Abstract:
The present disclosure is directed at a compression device for compressing a stack to prevent leaks and at an apparatus including the stack and the compression device. The stack includes a pair of rigid end plates located at opposing ends of the stack, a plurality of membrane bounded compartments layered between one of the rigid end plates and the other of the rigid end plates and fluid manifolds extending through the membrane bound compartments. The compression device is fixedly coupled to opposing ends of the pair of rigid end plates and includes compression members movable to compress one of the rigid end plates towards the other of the rigid end plates. The compression members are positioned to apply force to the stack in the vicinity of the fluid manifolds.
Abstract:
Described herein are a method and system for desalinating saltwater using concentration difference energy. A “five stream” dialytic stack is described that can be used to desalinate saltwater at a relatively high recovery ratio. The dialytic stack may include, for example, one or more drive cells having a paired concentrate and a diluent-c chamber in ionic communication with a product chamber that is adjacent to an anion and a cation discharge chamber each filled with diluent-p. The drive cell applies a drive voltage across the product chamber, and when the drive voltage exceeds a desalination voltage of the product chamber, the saltwater in the product chamber is desalinated. The dialytic stack may accept brine discharged from a first desalination plant as saltwater to be desalinated. Processing the brine in the dialytic stack may decrease its volume, decreasing costs associated with treating or otherwise disposing of the brine.
Abstract:
A system, apparatus and method for concentrating a solution. The system includes a humidification device and a solution flow path for flow of a solution to be concentrated to the humidification device. The humidification device includes humidification media to facilitate evaporation of liquid from the solution to be concentrated to gas as the solution to be concentrated passes through the humidification media thereby concentrating the solution. The method includes flowing a solution to be concentrated along a flow path to a humidification device including humidification media, flowing a gas through the humidification media, and flowing the solution to be concentrated through the humidification media. There is evaporation of liquid from the solution to the gas as the solution passes through the humidification media thereby concentrating the solution and producing a humidified gas. The solution to be concentrated may be salt water and the gas may be air.
Abstract:
The present disclosure is directed at a system, apparatus and method for concentrating a solution. The system includes a humidification device and a solution flow path for flow of a solution to be concentrated to the humidification device. The humidification device includes humidification media to facilitate evaporation of liquid from the solution to be concentrated to gas as the solution to be concentrated passes through the humidification media thereby concentrating the solution. The method includes flowing a solution to be concentrated along a flow path to a humidification device including humidification media, flowing a gas through the humidification media, and flowing the solution to be concentrated through the humidification media. There is evaporation of liquid from the solution to the gas as the solution passes through the humidification media thereby concentrating the solution and producing a humidified gas. The solution to be concentrated may be salt water and the gas may be air.
Abstract:
A process for producing a resilient ion exchange membrane. The process comprises the steps of (1) selecting a porous matrix, (2) saturating the porous matrix with a homogenous solution comprising a mixture of: (i) a hydrophilic ionic monomer, (ii) a hydrophobic cross-linking oligomer and/or a comonomer, (iii) a free radical initiator, and (iii) a solvent for solubilizing the hydrophilic ionic monomer, the hydrophobic cross-linking oligomer and/or comonomer, and the free radical initiator into a homogenous mixture. (3) removing excess homogenous solution from the saturated porous matrix, (4) stimulating release of free radicals from the free radical initiator thereby initiating a polymerization reaction to form a cross-linked ion-transferring polymer substantially filling the pores and covering the surfaces of the porous matrix thereby forming a membrane, (5) washing the membrane to remove excess solvent, and (6) optionally bathing the washed membrane in a sodium chloride solution to selectively cross-link sodium or chloride ions to and within the ion-transferring polymer.