Abstract:
A refiner device for refining of a liquid, wherein the refiner device includes a housing provided with a liquid inlet for unrefined oil or fuel, a liquid outlet for refined oil or fuel, an air inlet for supplying a flow of air into the housing, and an air outlet for discharging air and contaminants removed from the liquid. The refiner device further includes a liquid receiving plate arranged inside the housing, the refiner device arranged such that when liquid has passed through the liquid inlet during operation of the device, the liquid is contacted with an upper surface of the liquid receiving plate before it reaches the liquid outlet, and at least one heating element arranged to directly or indirectly heat the liquid while the liquid is in contact with the liquid receiving plate. The refiner device further includes a hollow air-guiding member arranged at the liquid receiving plate.
Abstract:
The vaporizer assembly includes a nail sub-assembly formed of a high rate of heat transfer material and an adapter assembly formed of a lower rate of heat transfer material. The nail sub-assembly includes a bowl at an upper end and a shaft extending down from the bowl. The shaft has a hollow bore passing therethrough. The nail sub-assembly is preferably formed of a titanium alloy which can be heated to high temperatures without damage thereto. The adapter has a hollow core sized to receive the shaft of the nail therein. The nail is preferably threaded along with portions of the adapter to facilitate height adjustability of the nail relative to the adapter. Lower portions of the adapter are configured to mate with a water pipe inlet tube or other downstream vapor handling device.
Abstract:
A method for production of crystallized Cobalt (II) Chloride hexahydrate is disclosed, and an implementation includes preparing a first cobalt (II) chloride solution, separating impurities from the first cobalt (II) chloride solution to obtain a second cobalt (II) chloride solution, concentrating the second cobalt (II) chloride solution, cooling the concentrated second cobalt (II) chloride solution, and injecting CO2 gas into the cooled concentrated second cobalt (II) chloride solution at an atmospheric pressure in order for Cobalt (II) Chloride hexahydrate crystals to form in the cooled concentrated second cobalt (II) chloride solution.
Abstract:
An apparatus for extracting contaminants from a contaminated material, such as contaminated soil and animal manure, includes an extraction tank having an interior, a heating element that is adapted heat the contaminated material to a temperature where contaminants in the contaminated material are released therefrom to the interior of the extraction tank, and an agitator that is adapted to agitate the contaminated material as it is being heated by the heating element. The apparatus also includes an air pump that generates a series of positive pressure air pulses at an outlet thereof and a series of negative pressure air pulses at the inlet thereof. The apparatus further includes one or more contaminant retaining mechanisms, such as a sediment holding tank, a fluid holding tank, and a gas filter. The interior of the extraction tank, the air pump, and the contaminant retaining mechanisms are connected in a closed loop air circulation system such that the contaminants that are released from the contaminated material are stored in the contaminant retaining mechanisms.
Abstract:
Disclosed is a method of regenerating a phosphoric acid solution from a treatment liquid including silicon (Si), hydrogen fluoride (HF), and phosphoric acid, the method including removing the silicon by supplying hydrogen fluoride corresponding to a preset amount or more to the treatment liquid, removing the hydrogen fluoride by heating the treatment liquid to a boiling point of hydrogen fluoride or higher, and adjusting a temperature and a concentration of the phosphoric acid to preset values.
Abstract:
The apparatus described herein uses a disc wafer-type rotor featuring channels disposed around its circumference and around the interior circumference of the rotor housing specifically to induce cavitation. The channels are shaped to control the size, oscillation, composition, duration, and implosion of the cavitation bubbles. The rotor is attached to a shaft which is driven by external power means. Fluid pumped into the device is subjected to the relative motion between the rotor and the device housing, and exits the device at increased temperature. The device is thermodynamically highly efficient, despite the structural and mechanical simplicity of the apparatus. Such devices accordingly provide efficient, simple, inexpensive, and reliable sources of distilled potable water for residential, commercial, and industrial use, as well as the separation and evaporation of other liquids.
Abstract:
A system, apparatus and method for concentrating a solution. The system includes a humidification device and a solution flow path for flow of a solution to be concentrated to the humidification device. The humidification device includes humidification media to facilitate evaporation of liquid from the solution to be concentrated to gas as the solution to be concentrated passes through the humidification media thereby concentrating the solution. The method includes flowing a solution to be concentrated along a flow path to a humidification device including humidification media, flowing a gas through the humidification media, and flowing the solution to be concentrated through the humidification media. There is evaporation of liquid from the solution to the gas as the solution passes through the humidification media thereby concentrating the solution and producing a humidified gas. The solution to be concentrated may be salt water and the gas may be air.
Abstract:
A method of heating fluids that includes heating liquids within a lower portion of a vessel, using first immersion heaters and heating a gas within an upper portion of the vessel using second immersion heaters. Liquid levels in the lower portion of the vessel are controlled. Heating the gas includes heating gas within the upper portion of the common vessel within another vessel positioned within the upper portion of the common vessel.
Abstract:
The present disclosure is directed at a system, apparatus and method for concentrating a solution. The system includes a humidification device and a solution flow path for flow of a solution to be concentrated to the humidification device. The humidification device includes humidification media to facilitate evaporation of liquid from the solution to be concentrated to gas as the solution to be concentrated passes through the humidification media thereby concentrating the solution. The method includes flowing a solution to be concentrated along a flow path to a humidification device including humidification media, flowing a gas through the humidification media, and flowing the solution to be concentrated through the humidification media. There is evaporation of liquid from the solution to the gas as the solution passes through the humidification media thereby concentrating the solution and producing a humidified gas. The solution to be concentrated may be salt water and the gas may be air.
Abstract:
The apparatus described herein uses a disc wafer-type rotor featuring channels disposed around its circumference and around the interior circumference of the rotor housing specifically to induce cavitation. The channels are shaped to control the size, oscillation, composition, duration, and implosion of the cavitation bubbles. The rotor is attached to a shaft which is driven by external power means. Fluid pumped into the device is subjected to the relative motion between the rotor and the device housing, and exits the device at increased temperature. The device is thermodynamically highly efficient, despite the structural and mechanical simplicity of the apparatus. Such devices accordingly provide efficient, simple, inexpensive, and reliable sources of distilled potable water for residential, commercial, and industrial use, as well as the separation and evaporation of other liquids.