Abstract:
A system for thermally decomposing chemical materials efficiently and controllably heats input feed materials to very high temperatures for decomposition in the presence or absence of oxygen by heating means that may be disposed peripherally or intermediately of reaction zones may be of the protected type and may include preheating of feed material and process gas.
Abstract:
The invention relates to a process and to an apparatus for effecting chemical syntheses in gaseous phase, under pressure, in the presence of a solid catalyst, for instance for ammonia synthesis from hydrogen and nitrogen or for the synthesis of methanol or higher homolog alcohols from hydrogen and at least one carbon oxide.The reactor of substantially cylindrical shape contains a plurality of elongate compartments of parallelipiped shape, adjacent to each other, the adjacent walls of the compartments or the common walls of the adjacent compartments being gas-tight walls, said tight walls forming hollow plates wherein are provided channels for the flow of a fluid heat carrier flowing through said walls under a pressure substantially equal to the pressure to which are subjected the reaction gases.
Abstract:
A reactor and the use thereof for fueling an internal combustion engine.The reactor comprising a monolithic substrate and catalytic material,said monolithic substrate containing a plurality of substantially parallel channels, means being provided for charging a heat exchange fluid into said channels and recovering said heat exchange fluid from said channels, said monolithic substrate containing a plurality of passageways through said substrate generally parallel to said channels, said passageways being adapted to pass a reactant stream through said monolithic substrate and said passageways being larger in cross section and fewer in number than said channels, said catalytic material being supported within said passageways, as a coating on the passageway walls or as pellets.
Abstract:
A catalyst support may be provided that comprises: an inner core, which includes at least one phase change material; a coating layer around the inner core, which includes at least one metal oxide; a catalytically active layer, which is positioned in interstices of the coating layer and/or lying on the coating layer, wherein at least one catalytically active substance is included in the catalytically active layer; and a supporting layer which is positioned under the coating layer. A recycle reactor may be provided comprising a reservoir for accommodating a chemical hydrogen storage substance; the catalyst support; a screw conveyor for input and transport of the catalyst support; and a heating device with which the catalyst support can be heated. A method for releasing hydrogen from a chemical hydrogen storage substance may be provided.
Abstract:
The invention relates to a process for preparing aromatic amines by hydrogenation of corresponding nitroaromatics by means of hydrogen, and also an apparatus suitable for this purpose. In particular, the invention relates to a process for preparing toluenediamine (TDA) by hydrogenation of dinitrotoluene (DNT).
Abstract:
An apparatus includes a heat transfer structure configured to be disposed at least partially within an enclosure of a fixed bed reactor and operable to transfer heat from a heat source to a heat sink. The heat transfer structure includes a plurality of fins each fin including a first end and a second end, the first end contacting an inner surface of the enclosure of the fixed bed reactor, the second end at least partially enclosed within the enclosure of the fixed bed reactor. A path of at least one of the plurality of fins comprises the shortest possible length between the first end of the at least one of the plurality of fins and the second end of the at least one of the plurality of fins.
Abstract:
Method and apparatus for carrying out highly exothermic catalyzed reactions, like so-called oxidative reactions, in pseudo-isothermal conditions, for example the reaction for producing nitric acid and the reaction for producing formaldehyde.
Abstract:
Improved design of a catalytic reactor for the production of methanol at equilibrium conditions whereby methanol as it is formed is separated from the gaseous phase into the liquid phase within the reactor, without reducing the catalytic activity of the methanol catalysts This is achieved by adjusting the boiling point of a liquid cooling agent being in indirect contact with the catalyst particles and by providing a specific ratio of catalyst bed volume to cooling surface area. Thereby, condensation of methanol as it is formed in the gaseous phase takes place at the cooling surface arranged evenly distributed within the reactor and within a very limited region of the catalyst bed.
Abstract:
Plate heat exchange unit (12) for isothermal or pseudo-isothermal chemical reactors, for the heat exchange between a fluid circulating inside the plates and an outer flow of reactant gases, wherein the walls (14, 15), of the plates (13) have notches (14s, 15s) surrounded by suitable joining lines (105), obtaining openings (104) passing through the plates (13) themselves, the plates resulting substantially permeable in the transversal direction to the reactant gases.