Abstract:
A photocatalytic method and apparatus employing a Holl-type mill for the direct production of methanol from methane and water comprising forming a water/methane emulsion and contacting the emulsion with a photocatalyst under conditions to react the methane and water to form methanol.
Abstract:
The invention relates to a process for producing trimeric and/or quaternary silicon compounds or trimeric and/or quaternary germanium compounds, where a mixture of silicon compounds or a mixture of germanium compounds is exposed to a nonthermal plasma, and the resulting phase is subjected at least once to a vacuum rectification and filtration.
Abstract:
Inside a furnace body with a vacuum environment or under the inert gas protection, the raw silicon material used to produce silicon carbide is melted or vaporized in a high temperature environment over 1300° C., and then the melted or vaporized raw silicon material will react with the carbonaceous gas or liquid to form silicon carbide. The present invention uses the carbonaceous gas with no metallic impurities, to replace petroleum coke, resin, asphalt, graphite, carbon fiber, coal, charcoal and some other carbon sources used in current production processes. When the carburizing reaction is in progress, the raw silicon material is melted or vaporized and the reaction takes place in the air. No container is required, so impurity contamination is lessened, and the produced silicon carbide has a fairly high purity.
Abstract:
Cross-linked compositions include a first precursor functionalized with a first reactive member and a second precursor functionalized with a second reactive member, the first and second reactive members covalently bonding with each other when exposed to UV radiation. The compositions are useful in a variety of surgical and wound treatment applications.
Abstract:
A reverse-phase suspension polymerisation process for the manufacture of polymer beads comprising forming aqueous monomer beads comprising an aqueous solution of water-soluble ethylenically unsaturated monomer or monomer blend and polymerising the monomer or monomer blend, to form polymer beads while suspended in a non-aqueous liquid, and recovering polymer beads, in which the process comprises providing in a vessel (1) a volume (2) of non-aqueous liquid wherein the volume of non-aqueous liquid extends between at least one polymer bead discharge point (3) and at least one monomer feed point (4), feeding the aqueous monomer or monomer blend through orifices (5) into, or onto, the non-aqueous liquid to form aqueous monomer beads, allowing the aqueous monomer beads to flow towards the polymer bead discharge point initiating polymerisation of the aqueous monomer beads to form polymerising beads, wherein the polymerising beads form polymer beads when they reach the polymer bead discharge point, removing a suspension of the polymer beads in non-aqueous liquid from the vessel at the polymer bead discharge point and recovering, water soluble or water swellable polymer beads from the suspension, in which the aqueous monomer or monomer blend and/or the orifices is/are vibrated such that the frequency multiplied by the weight average droplet diameter is between 150 and 800 mm/s. The invention also relates to the apparatus suitable for carrying out a reverse-phase suspension polymerisation and polymer beads obtainable by the process or employing the apparatus. Furthermore, the invention also relates to polymer beads having a weight mean particle size in the range of 0.05 to 5 mm which are held in a container in an amount of at least 300 kg having a standard deviation of particle size less than 20%. In addition, the invention also provides polymer beads having a weight mean particle size in the range 0.05 to 5 mm having a standard deviation of particle size less than 20% and having an amount of residual acrylamide of less than 500 ppm.
Abstract:
The invention relates to polymers carrying ester/hydroxyl groups, containing repetitive structural units of formulae (I) and (II) in a block-wise, alternating or statistical sequence, wherein D represents a direct bond between the polymer backbone and the hydroxyl group, a C1- to C6-alkene group, a C5- to C12-arylene group, an oxyalkene group of formula —O—R2—, an ester group of formula —C(O)—O—R2— or an amide group of formula —C(O)—N(R3)R2—, E represents a hydrocarbon group having 1 to 50 C-atoms, R2 represents a C2- to C10-alkene group, R3 represents hydrogen or a C1- to C10-alkyl group, which can carry substituents, k represents a number between 1 and 1000, n represents a number from 0 to 4999, m represents a number from 1 to 5000, and n+m represents a number between 10 to 5000, under the proviso that a) the molar portion of the structural units (I); on the polymer is between 0 and 99.9 mol-%, and b) the molar portion of the structural units (II) on the polymer is between 0.1 and 100 mol-% of the repetitive units. The invention also relates to a method for the production of said polymers using microwaves.
Abstract:
The invention accordingly provides a continuous process for reacting synthetic poly(carboxylic acid)s (A) containing, per polymer chain, at least 10 structural repeat units of formula (I) where R1 is hydrogen, a C1- to C4-alkyl group or a group of formula —COOH, R2 is hydrogen or a C1- to C4-alkyl group, and R3 is hydrogen, a C1- to C4-alkyl group or —COOH, with alcohols (B) of general formula (II) R4—(OH)n (II) where R4 is a hydrocarbyl radical of 1 to 100 carbon atoms which may be substituted or which may contain hetero atoms, and n is a number from 1 to 10 by a reaction mixture containing at least one synthetic poly(carboxylic acid) (A) and at least one alcohol of formula (II) in a solvent mixture containing water and, based on the weight of the solvent mixture, 0.1-75% by weight of at least one water-miscible organic solvent, and wherein the organic solvent has a dielectric constant of at least 10 when measured at 25° C., being introduced into a reaction sector and on flowing through the reaction sector being exposed to microwave radiation, and wherein the reaction mixture in the reaction sector is heated by the microwave irradiation to temperatures above 100° C.
Abstract:
Cross-linked compositions include a first precursor functionalized with a first reactive member and a second precursor functionalized with a second reactive member, the first and second reactive members covalently bonding with each other when exposed to UV radiation. The compositions are useful in a variety of surgical and wound treatment applications.
Abstract:
The present invention relates to methods of production of chemical bonds and subsequent molecules by electrospray ionization and the design of an electrospray chemical synthesizer, for use in chemical synthesis and expedited organic chemical reactions.
Abstract:
The invention relates generally to chemical reactions and processes, and in particular to a method for enhancing the rate of a chemical reaction and to apparatus for carrying out the method. The invention more particularly relates to methods and apparatus which utilize microwave and ultrasonic energy to enhance chemical reaction rates; and in specific instances, the invention relates to methods, processes and apparatus for the synthesis of biodiesel fuels. The methods, processes and apparatus of the invention are useful for the synthesis of biodiesel fuels; and also useful for production of reaction products of esterification and/or transesterification reactions including fatty acid alkyl esters.