Abstract:
A catalyst composition comprising a support having a surface area of at least 500 m2/kg, and deposited on the support:silver metal,a metal or component comprising rhenium, tungsten, molybdenum or a nitrate- or nitrite-forming compound, anda Group IA metal or component comprising a Group IA metal having an atomic number of at least 37, and in addition potassium, wherein the value of the expression (QK/R)+QHIA is in the range of from 1.5 to 30 mmole/kg, wherein QHIA and QK represent the quantities in mmole/kg of the Group IA metal having an atomic number of at least 37 and potassium, respectively, present in the catalyst composition, the ratio of QHIA to QK is at least 1:1, the value of QK is at least 0.01 mmole/kg, and R is a dimensionless number in the range of from 1.5 to 5, the units mmole/kg being relative to the weight of the catalyst composition.
Abstract:
A multimetal oxide of the formula I, Aga-cQbMcV2Od*e H2O, I where a is from 0.3 to 1.9, Q is an element selected from among P, As, Sb and/or Bi, is from 0 to 0.3, M is a metal selected from among Nb, Ce, W, Mn, Ta, Pd, Pt, Ru and/or Rh, c is from 0.001 to 0.5, with the proviso that (a-c)≧0.1, d is a number which is determined by the valence and abundance of the elements other than oxygen in the formula I and e is from 0 to 20, and also precatalysts and catalysts produced therefrom for the partial oxidation of aromatic hydrocarbons are described.
Abstract:
A catalyst for the epoxidation of an olefin comprising a carrier and, deposited on the carrier, silver, a rhenium promoter, a first co-promoter, and a second co-promoter; wherein the quantity of the rhenium promoter deposited on the carrier is greater than 1 mmole/kg, relative to the weight of the catalyst;the first co-promoter is selected from sulfur, phosphorus, boron, and mixtures thereof; the second co-promoter is selected from tungsten, molybdenum, chromium, and mixtures thereof; and the total quantity of the first co-promoter and the second co-promoter deposited on the carrier is at most 3.8 mmole/kg, relative to the weight of the catalyst; a process for preparing the catalyst; a process for preparing an olefin oxide by reacting a feed comprising an olefin and oxygen in the presence of the catalyst; and a process for preparing a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine.
Abstract:
There is provided a catalyst carrier comprising a refractory inorganic material having a sodium solubilization rate no greater than 5 ppmw/5 minutes. There is further a catalyst comprising a refractory inorganic material carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and one or more catalytically reactive metals deposited on said carrier. There is also provided a catalyst suitable for the vapor phase production of alkylene oxide from olefins and oxygen comprising an alumina-based carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and catalytically reactive silver deposited on said carrier.
Abstract:
A catalyst which comprises a carrier and silver deposited on the carrier, which carrier has a surface area of at least 1 m2/g, and a pore size distribution such that pores with diameters in the range of from 0.2 to 10 μm represent at least 70% of the total pore volume and such pores together provide a pore volume of at least 0.27 ml/g, relative to the weight of the carrier; a process for the preparation of a catalyst which process comprises depositing silver on a carrier, wherein the carrier has been obtained by a method which comprises forming a mixture comprising: a) from 50 to 90% w of a first particulate α-alumina having an average particle size (d50) of from more than 10 up to 100 μm; and b) from 10 to 50% w of a second particulate α-alumina having an average particle size (d50) of from 1 to 10 μm; % w being based on the total weight of α-alumina in the mixture; and shaping the mixture into formed bodies and firing the formed bodies to form the carrier, and a process for the epoxidation of an olefin, which process comprises reacting an olefin with oxygen in the presence of a said catalyst.
Abstract:
The present invention provides a process for hydrogenating carbonyl compounds, in particular C4-dicarboxylic acids to mixtures of tetrahydrofuran and gamma-butyrolactone, over supported rhenium catalysts, wherein rhenium and at least one further metal of groups VIII or Ib of the Periodic Table of the Elements, in particular ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), platinum (Pt), copper (Cu), silver (Ag) or cobalt (Co), is applied to the support in the form of at least one bimetallic precursor compound, and also to these catalysts.
Abstract:
An improved carrier useful for preparing a catalyst having excellent catalytic performance when used in the production of alkylene oxide, such as ethylene oxide. The carrier is obtained by a) impregnating a preformed alpha-alumina carrier with at least one modifier selected from among alkali metal silicates and alkaline earth metal silicates, b) drying said impregnated carrier; and c) calcining said dried carrier. The carrier may optionally be washed, prior to being impregnated by conventional catalytic material and/or promoter material.
Abstract:
A multimetal oxide of the formula I, Aga-cQbMcV2Od*eH2O, I where a is from 0.3 to 1.9, Q is an element selected from among P, As, Sb and/or Bi, is from 0 to 0.3, M is a metal selected from among Nb, Ce, W, Mn, Ta, Pd, Pt, Ru and/or Rh, c is from 0.001 to 0.5, with the proviso that (a-c)≧0.1, d is a number which is determined by the valence and abundance of the elements other than oxygen in the formula I and e is from 0 to 20, and also precatalysts and catalysts produced therefrom for the partial oxidation of aromatic hydrocarbons are described.
Abstract translation:式I的多金属氧化物,<?in-line-formula description =“In-line Formulas”end =“lead”?> Ag sub> ?V V V V V * O O O O O,,------------------------------------- 其中a为0.3〜1.9,Q为选自P,As,Sb和/或Bi的元素,为0〜0.3,M为选自Nb, Ce,W,Mn,Ta,Pd,Pt,Ru和/或Rh,c为0.001至0.5,条件是(ac)> = 0.1,d为由化合价 描述了式I中的氧以外的元素和e为0至20,并且还描述了由其制备的用于芳族烃的部分氧化的预催化剂和催化剂。
Abstract:
A process for preparing a catalyst comprising silver, a rhenium component, and a rhenium co-promoter on a support, which process comprises depositing the rhenium co-promoter on the support prior to or simultaneously with depositing silver on the support, and depositing the rhenium component on the support after depositing silver on the support; the catalyst; and a process for preparing an olefin oxide by reacting an olefin with oxygen in the presence of the catalyst.
Abstract:
A process for preparing an epoxidation catalyst comprising silver and a high-selectivity dopant on a support, which process comprises depositing a base having a pKb of at most 3.5 when measured in water at 25° C., on the support prior to depositing silver on the support, and depositing silver and a high-selectivity dopant on the support; the epoxidation catalyst; and a process for preparing an olefin oxide by reacting an olefin with oxygen in the presence of the epoxidation catalyst.