Abstract:
An apparatus and method for controlling the flow of a process material from a higher pressure environment to a lower pressure environment is provided. Each of a first and second chamber is divided into a product region and a control region by a flexible boundary. Inlet and outlet flow control devices provide fluid communication between each product region and a material input line and a material output line, respectively. A chamber control device is arranged to provide fluid communication between the control region of each chamber, which is filled with a non-compressible fluid. As product fills the product region of one chamber, fluid is displaced from the corresponding control region and into the control region of the other chamber. As the control region of the other chamber expands, product is forced out of the corresponding product region and into the material output line. The product region of each chamber is alternately filled and emptied to produce a continuous transport of material.
Abstract:
A pump for transferring particulate material from a source to a remote location, including a particulate chamber having open ends, check valves at the open ends, a vacuum source connected to the chamber adjacent one end, a gas source at the opposed end of the chamber and a control which alternatively connects the vacuum to the chamber to draw particulate material from the source to the chamber and connecting the gas under pressure to drive the particulate material to the remote location. In a preferred embodiment, the chamber has a cylindrical inner diameter and the source of vacuum is a venturi pump connected to a pinch valve permitting overflow of particulate material through the pinch valve and venturi pump, which is returned to the source. In one embodiment, the pinch valve surrounds an open end of the chamber permitting overflow while avoiding agglomeration of the particulate material.
Abstract:
An operating system for a power feed pump and a power feed pump having a transfer chamber with an inlet and an outlet. The outlet of the transfer chamber is closed, the inlet of the transfer chamber is opened, and a negative pressure is generated in the transfer chamber to suck a powder in through the inlet to the transfer chamber. The inlet of the transfer chamber is closed, the outlet of the transfer chamber is opened, and the powder in the transfer chamber is delivered through the outlet. The negative pressure in the transfer chamber is built up at least partially before the inlet of the transfer chamber is opened.
Abstract:
The invention concerns a process and a device (2) for the pneumatic conveyance of powdered material (4), in which a cylindrical chamber (10, 12), which can be connected with a reservoir (6) by a sealable inlet (14, 16) and with a delivery line (28) by a sealable outlet (18, 20), is alternately filled with material from the reservoir (6) and emptied of this material by applying a negative pressure to the chamber with its outlet (18, 20) closed and its inlet (14, 16) open through a bordering wall formed by a gas-permeable filter element (50) to draw material into the chamber (10, 12) from the reservoir (6), and by then admitting a gas under pressure into the chamber (10, 12) with its inlet (14, 16) closed and its outlet (18, 20) open to force the material previously drawn into the chamber (10, 12) out of the chamber and into the delivery line (28). To prolong the service life of the filter element (50) and to avoid contamination of the filter element more easily, it is proposed, in accordance with the invention, that the filter element (50) be designed as a hollow cylinder and that it surround at least a portion of the chamber (10, 12).
Abstract:
A fluid pumping assembly for pumping particulate material includes a pump housing defining a pump cavity including a pumping chamber for handling particulate material, a motive fluid chamber, and a moveable diaphragm. The fluid pumping assembly also includes devices for loading particulate material into the pumping chamber, and for injecting a high pressure, high volume purging fluid into the pumping chamber. Further, the fluid pumping assembly includes a control system having a control valve for shutting off flow of high pressure, high volume purging fluid into the pumping chamber when particulate material is being loaded into the pumping chamber, thus enabling dense phase loading of particulate material, and thereby optimizing a particulate material pumping capacity of the fluid pumping assembly.
Abstract:
In an apparatus for pneumatically conveying powder substances in a pipe system, wherein a volume is sucked in with reduced pressure and discharged with increased pressure for being passed further along, provided within the pipe system is at least one metering chamber, which can be alternately filled and emptied by way of a control member, for metering the powder substance. Connected to the metering chamber are on the one handnullwith the interposition of a filternulla gas pressure conduit and a suction conduit and on the other hand a feed conduit and a discharge conduit.
Abstract:
A color changer has a common feed passage that is connected to two or more inlet passages. The common feed passage can be reverse purged in a direction that is opposite a direction of powder flow through the common feed passage. A valve element seals a supply port that connects the inlet passage to the common feed passage to eliminate dead space and form a near bore line seal. The valve element is an elastic material that expands in response to applied compressed air inside the valve element.
Abstract:
The invention relates to a powder supply device for a powder coating system having at least one powder container (24), which has a powder chamber (22), and having at least one powder dispensing device, which is connected or can be connected to a powder dispensing channel (13) opening into the powder chamber (22) via a powder dispensing opening (36), in order to extract coating powder from the powder chamber (22) during powder coating operation of the powder coating system. In order to achieve as homogeneous and effective a powder conveyance as possible using the powder supply device according to the invention, the at least one powder dispensing device is designed as a powder dense flux pump (4), in particular as a single-chamber powder dense flux pump (200).