Abstract:
A method of manufacturing paint rollers includes the steps of extruding a cylindrical plastic core through a rotating extruder head, and securing an absorbent sheet material onto an outer surface of the core in a continuous process.
Abstract:
Apparatus for manufacturing poles of reinforced plastics material by advancing a prefabricated hollow core of plastics material coaxially with a plurality of resin impregnated reinforcing threads, the threads being held tight and radially distributed around the core and being caused to adhere thereto, spirally winding at least one impregnated reinforcing thread around to at least partially cover the core and impregnated reinforcing threads during their advance, and leaving the core and the impregnated reinforcing threads to harden to obtain the union of the threads with the core.
Abstract:
A helical winding unit includes a plurality of guides arrayed in a peripheral direction of a liner, and adapted to guide each of a plurality of fiber bundles supplied to the helical winding unit to the liner, and an opening member arranged downstream of the plurality of guides in a travelling direction of the fiber bundle, and including an inner peripheral surface for forming a hole, through which the plurality of fiber bundles are inserted from one side to the other side in the axial direction. A plurality of opening surfaces on which the plurality of fiber bundles travel while making contact are formed on the inner peripheral surface of the opening member, and a cross-sectional shape orthogonal to the axial direction of each opening surface is linear.
Abstract:
A manufacturing apparatus for producing filament-wound products such as pressure vessels and pipes includes a mandrel for supporting a pre-form vessel, a mandrel driver structured to rotate the pre-form vessel, and an array of individual filament supports for guiding individual filaments used in producing the vessel. Using the unique aspects of the apparatus which avoids the customary high-angle fiber crossings significantly speeds up manufacturing and thus lowers product cost, increases product lifetime, reduces fatigue stress, and reduces weight of the finished product. Methods of production are also disclosed.
Abstract:
In the present invention, a technique is described for manufacturing microtube devices which have peripheral geometries that are not uniform along the tube or device axis. These geometries may exist in only one location on the periphery of the microtube device or geometries may be repeated either uniformly or non-uniformly with micron or sub-micron precision along the tube or device axis. The preferred manufacturing process involves forming a complex mandrel, ie., (one, for example, that can not be formed by extrusion or pultrusion under constant processing conditions) and giving it at least one metallic and/or nonmetallic coating by any of a variety of techniques. The complex mandrel can then be removed by appropriate chemical or physical means that do not adversely affect the coating(s) desired for the wall. The result is a microtube structure having an axial profile duplicating that on the mandrel from which it was formed.
Abstract:
The object of the invention is a method for building hoses reinforced with spirally laid fibers, where the hose under construction (3) undergoes both rotation and advancing motion relative to the laying head (12), and where the reinforcing fibers are unwound from drums (14). The drums (14) are rotated about two axes, the first axis being the principal axis of the drums (A) and the second axis (B) being nearly parallel with the direction in which the fibers are unwound, where the direction of rotation of the drums (14) about the second axis (B) is the same as the direction in which the hose under construction (3) is rotated. The apparatus for carrying out the method comprises a laying head (12) and a drum support platform (15), where the hose under construction (3) undergoes both rotation and advancing motion relative to the laying head (12), and where the reinforcing fibers (10) are unwound from drums (14) through a circular fiber guide (1) The further object of the invention is a method for building hoses reinforced with spirally laid fibers, wherein the reinforcing fibers (10) are laid on the hose surface through a rotating self-adjusting circular fiber guide (2) arranged substantially coaxially with the hose. The invention also relates to an apparatus for carrying out the above method.
Abstract:
A filament winding apparatus reduces fluctuations in a winding operation by bringing a plurality of guide portions that guide fiber bundles to a liner close to the liner in a winding unit. Each of the guide portions is a tubular member having a guide hole penetrated from a base end to a leading end portion. The leading end portion has a smaller thickness width. Each of the guide portions guides a second fiber bundle to the liner by passing the second fiber bundle from a side of the base end portion to a side of the leading end portion of the guide hole. By rotating each of the guide portions about an axis of the guide portion, and by sliding the guide portions in the radius direction of the liner, the guide portions can be brought close to the liner.
Abstract:
A printing member such as a printing cylinder includes an at least partly metal cylinder, or a sleeve to be mounted on a mandrel rotating about its axis. The printing member comprises a body having a thickness. With the printing member there is associated an activatable signaling device that is connectable to a recording device that is arranged to store data related to at least one characteristic of the printing member or to the use of the printing member. The activatable signaling device can include a transponder such as an RFID.