Abstract:
Method of stabilizing high-concentration formaldehyde solutions having a CH2O content of >70% by weight against precipitation of solids, which comprises heating the high-concentration formaldehyde solution at a heating rate of at least 5° C./min to a temperature of from 80° C. to 200° C. immediately after it has been prepared and storing it at a temperature in this range.
Abstract translation:稳定CH 2 O 2含量> 70重量%的高浓度甲醛溶液与固体沉淀物的方法,其包括以至少5℃的加热速率加热高浓度甲醛溶液 在制备它并立即将其储存在该范围内的温度之后,将其加热至80℃至200℃的温度。
Abstract:
A two-step aldol condensation process is disclosed. α-Campholenic aldehyde (ACA) and methyl ethyl ketone (MEK) react in the presence of a base under conditions effective to produce a mixture comprising a high yield of ketol condensation products. Dehydration of the ketols in the presence of an organic sulfonic acid provides unsaturated ketones that are valuable intermediates for fragrance components for synthetic sandalwood products. Compared with the usual one-step, base-catalyzed approach, the two-step process increases the yield of all condensation products and maximizes production of the most valuable ketone isomers.
Abstract:
A process for selectively hydroformylating dicyclopentadiene to 8(9)-formyltricyclo-[5.2.1.02,6]dec-3-ene in a heterogeneous reaction system using an aqueous solution of transition metal compounds, containing water-soluble organic phosphorus(III) compounds in complex-bound form, of group VIII of the Periodic Table of the Elements, wherein the water-soluble organic phosphorus(III) compounds are alkali metal or alkaline earth metal salts of sulfonated arylphosphines and aryldiphosphines.
Abstract:
Process for preparing high-concentration formaldehyde solutions having a CH2O content of ≧50% by weight from an aqueous formaldehyde solution having a lower CH2O content by evaporation of part of this solution (partial evaporation), in which the aqueous formaldehyde solution is heated to an evaporation temperature T at which the gas phase becomes enriched in water relative to the liquid phase and the gas phase formed is taken off continuously or discontinuously, wherein the evaporation temperature T obeys the relationship: T[° C.]
Abstract translation:通过蒸发具有较低CH 2 O 2含量的甲醛水溶液制备CH 2 O 2含量> 50重量%的高浓度甲醛溶液的方法 该部分溶液(部分蒸发),其中甲醛水溶液被加热到气相相对于液相富集水的蒸发温度T,形成的气相连续或不连续地取出,其中 蒸发温度T遵循以下关系:<?in-line-formula description =“In-line Formulas”end =“lead”?> T [°C。] <°C] (c)= A + Bx(c / 100)+ Cx(c / 100) ) 2 + Dx(c / 100)3和A = + 68.759,B = + 124.77,C = -12.851,D = -10.095,其中c是瞬时 蒸发期间甲醛水溶液的CH 2 O 2 O含量为重量百分比,为20〜99% ht。
Abstract:
An oxide catalyst composition for use in producing methacrolein or a mixture of methacrolein and methacrylic acid, wherein the oxide catalyst composition is represented by the formula (Mo+W)l2BiaAbBcFedXeSbfOg, wherein: A is at least one member selected from the group consisting of Y and the elements of the lanthanoid series exclusive of Pm; B is at least one member selected from the group consisting of K, Rb and Cs; X is Co solely, or a mixture of Co and at least one member selected from the group consisting of Mg and Ni; and a, b, c, d, e, f and g are, respectively, the atomic ratios of Bi, A, B, Fe, X, Sb and O, relative to twelve atoms of the total of Mo and W, wherein the atomic ratios (a to f) of the elements and the relationship between the amounts of the elements are chosen so as to satisfy specific requirements.
Abstract translation:用于制备甲基丙烯醛或异丁烯醛和甲基丙烯酸的混合物的氧化物催化剂组合物,其中所述氧化物催化剂组合物由式(Mo + W)12 N a B,B,B,C,C,C,C,C,C,C,C, 其中:A是选自Y和不包括Pm的镧系元素的元素中的至少一种; B是选自K,Rb和Cs中的至少一个; 或者是Co和选自Mg和Ni中的至少一种的混合物; 和a,b,c,d,e,f和g分别是相对于Mo和W总数的十二个原子的Bi,A,B,Fe,X,Sb和O的原子比,其中 选择元素的原子比(a至f)和元素的量之间的关系,以满足特定要求。
Abstract:
The present invention provides a process for recovering liquid chemical products, in which the residual liquid chemical products remaining in respective handling devices in a chemical production facility can be efficiently and safely recovered therefrom without leakage thereof out of the system. In the process for recovering liquid chemical products in a chemical production facility according to the present invention, the chemical products are withdrawn from the handling devices through bottom discharge pipes (14), (15), (16) and (17) thereof, directly collected by the gravity thereof into a common inclined collection pipe (13) located at a position lower than the bottom discharge pipes and connected to the bottom discharge pipes, and then delivered by the gravity thereof through the inclined collection pipe (13) to a recovery tank (1) located at a position lower than the inclined collection pipe and connected to a lower end of the inclined collection pipe.
Abstract:
A method of making a 3-alkylcycloalkanol of formula 2: where R1 represents a methyl or ethyl group, R2 represents hydrogen, R3 represents an ethyl, propyl, butyl, isobutyl or isoamyl group, R4 represents hydrogen and R5 represents hydrogen, or a methyl, ethyl, propyl, isobutyl or isoamyl group comprises the following steps: (1) carrying out an electrophilic substitution reaction of an alkyl group or precursor thereof, on an ortho-substituted alkylbenzene compound of formula 3: where R6 represents hydrogen, or a methyl or ethyl group; (2) hydrogenating the reaction product of step (1); (3) performing an elimination reaction on one or more reaction products of step (2) to produce one or more alkene products; and (4) hydrating the one or more alkene products of step (3) to provide a 3-alkylcycloalkanol of formula 2. The electrophilic substitution reaction of step (1) may be a Friedel-Crafts acylation, e.g. using an isopropyl ketone precursor, or a Friedel-Crafts alkylation, e.g. using an isobutyl group. The 3-alkylcycloalkanols, especially 3-(2-methylpropyl)-1-methylcyclohexanol, are useful fragrance materials and find use in perfumes and perfumed products.
Abstract:
The invention relates to a continuous method for the purification of acrolein, wherein: an aqueous acrolein solution is supplied, devoid of gas which is difficult to condense, in a distillation column fitted with at least one boiler at the base thereof and with at least one condenser at the head thereof; a mixture which essentially contains water is drawn off at the base of the distillation column; a mixture which essentially contains acrolein and water is drawn off at the head of the distillation column; the mixture drawn off from the head of the distillation column is cooled in the condenser to a temperature enabling an aqueous condensate to be obtained, in addition to a substantial amount of a gaseous mixture which is rich in acrolein; the purified acrolein is isolated in the gaseous mixture which is rich in acrolein.
Abstract:
In an aqueous formaldehyde solution comprising formaldehyde in the form of monomeric formaldehyde, methylene glycol and polyoxymethylene glycols in a total concentration x of ≧65% by weight, the mean molar mass {overscore (M)} of the polyoxymethylene glycols is, as a function of the formaldehyde concentration, equal to or less than the values given by equation I: ( M _ g / mol ) = 48 + 6.589 · 10 - 1 · ( x % by weight ) + 4.725 · 10 2 · ( x % by weight ) 2 - 3.434 · 10 - 3 · ( x % by weight ) 3 + 9.625 · 10 - 5 · ( x % by weight ) 4 - 1.172 · 10 6 · ( x % by weight ) 5 + 5.357 · 10 - 9 · ( x % by weight ) 6 ( I ) where: {overscore (M)} is the mean molar mass, and x is the total concentration of formaldehyde in the form of monomeric formaldehyde, methylene glycol and polyoxymethylene glycols in % by weight (total formaldehyde concentration).
Abstract:
An oxide catalyst composition for use in producing methacrolein or a mixture of methacrolein and methacrylic acid, wherein the oxide catalyst composition is represented by the formula (MO+W)l2BiaAbBcFedXeSbfOg, wherein: A is at least one member selected from the group consisting of Y and the elements of the lanthanoid series exclusive of Pm; B is at least one member selected from the group consisting of K, Rb and Cs; X is Co solely, or a mixture of Co and at least one member selected from the group consisting of Mg and Ni; and a, b, c, d, e, f and g are, respectively, the atomic ratios of Bi, A, B, Fe, X, Sb and O, relative to twelve atoms of the total of Mo and W, wherein the atomic ratios (a to f) of the elements and the relationship between the amounts of the elements are chosen so as to satisfy specific requirements.