Abstract:
The present disclosure provides a method for producing an aerogel, the method comprising reacting at least one acid monomer with at least one diamino monomer in a first solvent under conditions appropriate to form a polyimide polymer; conducting a solvent exchange wherein the first solvent is exchanged for a second solvent, said second solvent having a freezing point, wherein said solvent exchange further comprises (1) submersing the polyimide polymer in the second solvent in a pressure vessel and (2) creating a high pressure environment inside the pressure vessel for a first period of time; cooling the polyimide polymer to a first temperature below the freezing point of the second solvent; and subjecting cooled polyimide polymer to a first vacuum for a second period of time at a second temperature.
Abstract:
Porous polymer composites and methods of preparing porous polymer composites are provided herein. In some embodiments, a method for preparing porous polymer composites may include mixing a first polymer with a solvent and a particulate filler to form a first polymer composition, wherein the amount of particulate filler in the first polymer composition is below a mechanical percolation threshold; and removing the solvent from the first polymer composition to concentrate the first polymer and particulate filler into a second polymer composition having a porous structure, wherein the particulate filler concentration in the second polymer composition is increased above the mechanical percolation threshold during solvent removal.
Abstract:
The present invention relates to a multi-layered microporous polyolefin film for a battery separator and a method for preparing the same. The microporous multi-layered film of the present invention has a characteristics to have both the low shutdown temperature conferred by the polyethylene and the high melt fracture temperature conferred by the polypropylene and heat-resistant filler. In addition, it has the high strength and stability conferred by the micropores prepared under wet process and the high permeability and high strength conferred by the macropores prepared under dry process. Therefore, this multi-layered film can be used effectively to manufacture a secondary battery with high capacity and high power.
Abstract:
The present invention relates to a porous gelatin material in the form of spherical particles with a continuous pore structure and cast, three-dimensional, porous gelatin structures. The invention also comprises methods for preparation of the porous gelatin materials and structures. The method for preparing the porous gelatin material in the form of spheres with a continuous pore structure comprises the steps of preparing a homogenous water-based gelatin solution, adding an emulsifier with an HLB value >9, adding a first composition comprising an organic solvent and an emulsifier with an HLB value >9, adding a second composition comprising an organic solvent and an emulsifier with an HLB value
Abstract:
The invention relates to a method for removing a process solvent (P-sol) from a polymer extrudate, especially in connection with a process for producing a microporous membrane. The method involves contacting the extrudate with chlorinated hydrocarbon (CHC) and hydrofluoroether (HFE) in a first stage; contacting the extrudate from the first stage with HFE in a second stage; combining the first and second waste streams and then separating the P-sol from the combined streams to make an HFE-CHC stream; cooling the HFE-CHC stream to make an HFE-rich phase and a CHC-rich phase; and conducting the CHC-rich phase and/or the HFE-rich phase to step (A).
Abstract:
Provided is a microporous material, e.g., a microporous sheet material, having a matrix of polyolefin, finely-divided, substantially water insoluble particulate filler, a network of interconnecting pores communicating throughout the microporous material, and at least one retrospectively identifiable taggant material embedded within the matrix, wherein the polyolefin is present in the microporous material in an amount of 20 to 60 weight percent, based on the weight of the microporous material. The taggant material provides a marker, signature or code that is capable of retrospective identification by machine, instrument or by the naked eye. Articles including the microporous material and processes for preparing the microporous material also are provided.
Abstract:
The present invention relates to a porous gelatin material in the form of spherical particles with a continuous pore structure and cast, three-dimensional, porous gelatin structures. The invention also comprises methods for preparation of the porous gelatin materials and structures. The method for preparing the porous gelatin material in the form of spheres with a continuous pore structure comprises the steps of preparing a homogenous water-based gelatin solution, adding an emulsifier with an HLB value >9, adding a first composition comprising an organic solvent and an emulsifier with an HLB value >9, adding a second composition comprising an organic solvent and an emulsifier with an HLB value
Abstract:
Porous spherical particles of polyamide 11 or polyamide 12 can be produced by an industrially advantageous process which comprises the steps of mixing a polyamide solution of polyamide 11 or polyamide 12 dissolved in a phenol compound and a low molecular weight aliphatic alcohol which is a poor solvent for the polyamides but is well compatible with the phenol compound in the presence of a high molecular weight alkylene glycol to prepare a mixture solution having an initial viscosity of 10 mPa·s or more, and allowing the mixture solution to stand, to precipitate polyamide particles.
Abstract:
Monolithic organic copolymer prepared by copolymerisation of an alkylstyrene and a divinylbenzene or a derivative thereof in the presence of a porogen, wherein said porogen comprises decanol and at least one of the group consisting of tetrahydrofuran and toluene.
Abstract:
Porous membranes having a micro phase separation structure and showing a light transmittance at the wavelength of 400 nm of not less than 30% are obtained by the dry phase conversion method comprising drying a coating layer of a dope containing a polymer, a good solvent for the polymer and a poor solvent for the polymer which solvent has a higher boiling point than the good solvent. The polymer includes cellulose derivatives, vinyl-series polymers such as acrylonitrile-series polymers and (meth)acrylic acid ester-series polymers, polysulfone-series polymers, and the like. The porous polymer membranes have a porosity of 10 to 60%, a mean pore size of about 0.002 to 0.35 &mgr;m and a maximum pore size of not greater than 0.4 &mgr;m. These porous membranes shows not only excellent transparency but also high productivity.