Abstract:
A process is provided for creating feed pellets from agricultural residue material having substantially no food value, such as corn stover. The agricultural residue material is harvested and baled for transport to a storage and processing site. The baled agricultural residue material is then shredded and ground, and one or more chemical agents are added to depolymerize the fiber (lignin-carbohydrate) matrix of the agricultural residue material. Agricultural processing byproducts such as distiller's solubles and dried distillers grains with solubles (DDGS) are added to the agricultural residue material, either before or after the chemical agents are added, to form a combined material. The combined material is then pelletized into feed pellets, which may be transported and stored for later consumption by animals. The process produces a nutritionally enhanced material which is more easily digested than existing feed rations.
Abstract:
An injection system for solid particles comprises a conveying hopper (11) located at an upstream location (1), a fluidizing device (21) for fluidizing the solid particles at the outlet of the conveying hopper (11) and forming a solid-gas flow, a pneumatic conveying line (15) for conveying the solid-gas flow from the fluidizing device (21) to a downstream location (2) and a static distribution device (17) with a plurality of injection lines (19), connected thereto. An upstream flow control system controls the mass flow rate in the pneumatic conveying line (15) at the upstream location (1) by controlling the opening of an upstream flow control valve (35) responsive to the solid material mass flow measured in the pneumatic conveying line (15) at the upstream location (1). A downstream flow control system controls the mass flow rate in the pneumatic conveying line (15) at the downstream location (2) by controlling the opening of a downstream flow control valve (51, 79i) responsive to the instantaneous mass flow rate sensed by a main downstream mass flow rate sensor (53).
Abstract:
In a coal burning boiler apparatus, temperature of the pulverized coal to be fed to the boiler can be set depending on the property of the combustion coal, so that stable ignition and combustion can be made regardless of the property of the combustion coal fed.Provided are a coal burning boiler 1, a coal pulverizer 2 for pulverizing massive coal 6 into fine powder, a temperature sensor 18 for detecting temperature of the primary air 35 for entraining the pulverized coal to the coal burning boiler, regulators 9, 12, 13 and 14 for regulating the temperature of the primary air and a controller for controlling the primary air temperature regulators on the basis of detected result of the temperature sensor so as to make the primary air have a given temperature.
Abstract:
A method and apparatus for delivering biomass fuel to a structure through an external wall of the structure is disclosed. The apparatus comprises a hopper disposed within a delivery vehicle. The hopper includes an inlet disposed on its top surface to receive biomass fuel and an outlet located proximate the bottom of the hopper to release the fuel by opening a gate valve. A delivery hose is connected to the hopper outlet at one end and is sealably connectable at its other end to an externally accessible coupling disposed on an external wall of the structure to which fuel is to be delivered. The coupling is connected on the interior side of the external wall to a delivery pipe that connects to a fuel bin for storing the biomass fuel. Sensors within the bin can signal the operator when the level of fuel within the bin reaches a preselected level, allowing the operator to stop delivery when the bin is full.
Abstract:
An airlock-feeder for a coal pulverizing system which includes a raw coal bunker, a pulverizer, and a vertically extending coal duct forming a raw coal flow path from the raw coal bunker to the pulverizer. The airlock-feeder comprises upper, middle and lower, vertically separated valves disposed in the raw coal flow path. Each valve has a seal member, a disc pivotally mounted at a centerline, and a pneumatic actuator. At least one or two of the valves are closed at any given time thereby providing a positive air-tight seal.
Abstract:
The present disclosure is directed to systems and methods for high flame temperature oxy-combustion that enables the capture of CO2 cost effectively. One part of the presently disclosed subject matter comprises an annular shroud burner which utilizes a supply of undiluted oxygen and minimal flue gas recycle to generate a high flame temperature to maximize efficiency. The annular shroud burner may deliver oxygen into a combustion zone where mixing of the oxygen and a stream of fuel occurs. Flue gas recycled from the exit of the combustion system serves the dual purpose of conveying the coal into the reaction zone, as well as providing local cooling and protection from high incident heat fluxes through the novel shroud cooling design. The annular shroud burner may be configured to produce an axial jet flame that controls the rate of mixing of oxygen and fuel, thereby extending the heat release. Oxygen and coal may be mixed in a ratio such that peak flame temperatures exceed 4,500° F. (2,482° C.) while the flow of recycled flue gas is regulated to control flame temperature and protect burner components and near-burner surfaces.
Abstract:
Provided is a combustion burner including: a fuel nozzle (51) that is able to blow a fuel gas obtained by mixing pulverized coal with primary air; a secondary air nozzle (52) that is able to blow secondary air from the outside of the fuel nozzle (51); a flame stabilizer (54) that is provided at a front end portion of the fuel nozzle (51) so as to be near the axis center; and a rectification member (55) that is provided between the inner wall surface of the fuel nozzle (51) and the flame stabilizer (54), wherein an appropriate flow of a fuel gas obtained by mixing solid fuel with air may be realized.
Abstract:
Provided is a combustion burner including: a fuel nozzle (51) that is able to blow a fuel gas obtained by mixing pulverized coal with primary air; a secondary air nozzle (52) that is able to blow secondary air from the outside of the fuel nozzle (51); a flame stabilizer (54) that is provided at a front end portion of the fuel nozzle (51) so as to be near the axis center; and a rectification member (55) that is provided between the inner wall surface of the fuel nozzle (51) and the flame stabilizer (54), wherein an appropriate flow of a fuel gas obtained by mixing solid fuel with air may be realized.
Abstract:
A dual phase fuel feeder is disclosed that can be used to provide both solid fuels and liquid fuels to a boiler, such as a fluidized bed boiler. The fuel feeder includes a sloped chute which defines a solid feedpath. Gas distribution nozzles are located at the base of the fuel feeder, and secondary nozzles are located so as to be able to distribute a liquid or particulate fuel into the solid feedpath. This permits the liquid fuel to contact the solid fuel and be carried into the fluidized bed instead of becoming suspended above the bed.
Abstract:
A solid-fuel burner includes: a venturi having a constricting portion where the transverse cross section of a fuel passage is reduced in a fuel nozzle for supplying a solid fuel; and a fuel concentrator for diverting the flow in the nozzle outward in the wake side of the venturi, and the nozzle is formed so that (a) the aperture in the vicinity of an opening portion of a boiler furnace wall surface has a flat shape, (b) cross-sectional shape thereof orthogonal to a nozzle center axis C on the outer peripheral wall of the nozzle is circular in a transverse cross section up to the constricting portion of the venturi, (c) a portion that has a gradually increasing degree of flatness is provided between the constricting portion and the opening portion, and (d) the flat shape in the opening portion is where the degree of flatness reaches a maximum.