Abstract:
Electronically agile optical filtering modules for equalizing light propagation differences in at least two spaced optical beam pathways in the modules. The modules use optical polarization rotation devices that may include acousto-optic tunable filter (AOTF) devices, liquid crystal devices, and magneto-optic devices. Such devices may be subject to polarization dispersion losses (PDL) and polarization mode dispersion (PMD) that may be different for when light travel along different light paths through the device. By redirecting light beams back along a different bi-directional path through the devices which may exhibit non-uniform performance across orthogonal polarizations, PDL and PMD may be reduced.
Abstract:
An optical frequency converter using reciprocating modulation includes a device that, taking n as a predetermined integer of 1 or more, modulates light of a predetermined frequency to produce an nth order sideband group thereof, a device that modulates the nth order sideband group to produce an (n+1)th order sideband group, and a device that selects a specific sideband from a plurality of sideband groups.
Abstract:
This invention pertains to a device and method for making same. The device includes a substrate suitable for supporting pathways for optical signals; separate pathways disposed on the substrate suitable for propagating optical signals, the pathways including an input and an output optical pathway; and a reflective surface in operative contact with the input and output pathways for receiving an optical signal from the input pathway and reflecting the optical signal into the output pathway. The method for making the device includes the steps of providing two separate optical pathways on a single substrate, one being an input pathway and the other being an output pathway; providing a reflective surface in operative contact with the pathways whereby an input optical signal is passed through the input pathway, reflected by the reflective surface into the output pathway, and passed out of the output pathway, whereby the device can be made on a lithium niobate substrate with titanium-diffused pathways with a loss of about 1.0 dB or less, in a space that is at least null the space required by the same or similar prior art device.
Abstract:
A novel and efficient system and method for providing an output beam of collimated energy in the 8-12 micron range. The solid state system includes a pump laser (210) for providing an input beam and an OPO (250) using an x-cut potassium titanyl arsenate crystal for shifting the input beam from the first wavelength to a second wavelength. A second optical parametric oscillator (271) is included for shifting the beam from a second wavelength to a third wavelength. The second optical parametric oscillator (271) uses a cadmium selenide crystal. A tuning mechanism with an associated controller is provided to tune the oscillator as needed for a particular application.
Abstract:
An optical apparatus comprises an input port for receiving light, an output port for outputting light, and an optical path extending from the input port to the output port. The optical path is at least partially comprised of polycrystalline electro-optic material. The optical apparatus further comprises a field generator that generates a field in the polycrystalline electro-optic material. The polycrystalline electro-optic material is configured with respect to the input port and the output port, and is responsive to the field, to cause at least a substantial portion of light propagating along the optical path to deviate from the optical path along a plurality of deviant optical paths. The plurality of deviant optical paths do not pass through the output port, thereby reducing light output through the output port.
Abstract:
A short pulse of radiation is generated by shining radiation through a magneto-optical material. The material is excited twice to rapidly change a property of the wave, such as the direction of the polarization. The first excitation rotates the polarization in a first direction and the second excitation brings the polarization back to its initial direction before the first excitation. Although the time for relaxation from the excitations may be lengthy, a pulse of light can be produced that is shorter in time than the time for excitation plus the time for relaxation. Light experiencing the pair of lengthy relaxations has each cancelling the effect of the other. The pulse of light has a length that depends on the time difference between the two excitations and the spacing between them. The rapid excitations are provided by pulses of current in a superconductor located near the magneto-optical material.
Abstract:
A Faraday rotator is provided which obtains excellent optical characteristics with a small number of layers. In the Faraday rotator, a metal reflective film is formed on a substrate, then a first periodic dielectric multilayer film made of silicon dioxide SiO2 and tantalum pentaoxide Ta2O5, a magneto-optical thin film, and a second periodic dielectric multilayer film made of tantalum pentaoxide Ta2O5 and silicon dioxide SiO2 are formed sequentially. The number of layers of the first periodic dielectric multilayer film is larger than that of the second periodic dielectric multilayer film. Incident light from a polarizer passes through the periodic dielectric multilayer films, is reflected at the metal reflective film, returns through the periodic dielectric multilayer films, and passes through an analyzer to exit out.
Abstract translation:提供法拉第旋转器,其获得具有少量层的优异的光学特性。 在法拉第旋转器中,在基板上形成金属反射膜,然后形成由二氧化硅SiO 2和五氧化钽Ta 2 O 5制成的第一周期性电介质多层膜,磁光薄膜,以及由五氧化二钽制成的第二周期性电介质多层膜 依次形成Ta2O5和二氧化硅SiO2。 第一周期性电介质多层膜的层数大于第二周期性电介质多层膜的层数。 来自偏振片的入射光通过周期性电介质多层膜,在金属反射膜处反射,通过周期性电介质多层膜返回,并通过分析仪退出。
Abstract:
There is disclosed an optical frequency up-conversion system which uses a pair of dichroic mirrors positioned on the optical axis of an infrared collector to produce a multipass traverse of a nonlinear crystal positioned between the mirrors by a beam of pumping radiation in order to enhance the field of view, the conversion efficiency and the resolution of the system. The crystal is placed in the optical path at the interaction area of the infrared beam and the pump beam and between the dichroic mirrors. One of the mirrors is transparent to the infrared frequency and the other is transparent to the up-converter sum frequency. Both mirrors are reflective at the pump frequency. The system may be passive and collect a thermal image or it may utilize a pulsed ir illuminator laser in conjunction with a synchronously pulsed pump laser in order to increase the output power level.
Abstract:
The invention relates to an optical system comprising: a laser source which generates pulsed laser radiation consisting of a temporal sequence of laser pulses; and at least one pulse compression device which is located in the beam path and has a non-linear medium, wherein the laser pulses undergo non-linear spectral broadening during propagation through the medium, and a chirp is applied to the laser pulses. The aim of the invention is to provide an optical system which makes it possible to generate non-linearly compressed laser pulses with improved temporal pulse contrast or with improved pulse quality. According to the disclosed approach, a group delay dispersion which varies along the beam path and which compensates at least partially for the chirp is applied to the laser pulses by the pulse compression device.
Abstract:
A method and an arrangement of spectrally broadening laser pulses for non-linear pulse compression is disclosed which is based on the transition from the spectral broadening in a waveguide to the spectral broadening in a suitably shaped lens conductor. The arrangement is non-sensitive with respect to the variations of the pulse power, the position and parameters of the laser beam. The spectrally broadened pulses can be compressed in a satisfactory manner and the quality of the laser beam maintained by dividing the non-linear phase required for spectral broadening into sufficiently smaller steps which can be separated without non-linearity by suitable prorogation. The limitation of the pulse powers to less than the critical power of dielectrics is thus overcome and a pulse energy range for which the spectral broadening in the glass fibers cannot be used, is developed. The arrangement can compress pulses having a large average power.