Abstract:
The present invention provides a producing method of R-T-B-based sintered magnets in which, the recovery chamber 40 includes inert gas introducing means 42, evacuating means 43, a carry-in port, a discharge port 40a, and a recovery container 60. The recovery step includes a carrying-in step of conveying a processing container 50 into the recovery chamber 40, a discharging step of discharging coarsely pulverized powder in the processing container 50 into the recovery chamber 40, a gas introducing step of introducing inert gas into the recovery chamber 40, and an alloy accommodating step of recovering the coarsely pulverized powder into the recovery container 60. Addition of pulverization aid is carried out in the alloy accommodating step. A remaining amount of coarsely pulverized powder in the recovery chamber 40, an oxygen-containing amount of the R-T-B-based sintered magnet is reduced, and magnetic properties are enhanced.
Abstract:
A method and a device for recovering hydrogen pulverized powder of a raw-material alloy for rare-earth magnets capable of lowering the possibility that hydrogen pulverized powder remains in a recovery chamber; therefore, enhancing magnetic properties by reducing an oxygen content of an obtained rare-earth magnet. A processing container 50 is carried into a recovery chamber 40 from a processing chamber after inert gas is introduced into the recovery chamber 40. The raw-material alloy for rare-earth magnets in the processing container 50 is discharged into the recovery chamber 40 after the pressure in the recovery chamber 40 is reduced Thereafter, inert gas is introduced into the recovery chamber 40, and the raw-material alloy for rare-earth magnets is recovered into the recovery container 50 after a pressure in the recovery chamber 40 is set to a predetermined pressure by inert gas.
Abstract:
A method and an equipment for processing NdFeB rare earth permanent magnetic alloy with a hydrogen pulverization are provided. The method includes steps of: providing a continuous hydrogen pulverization equipment; while driving by a transmission device, passing a charging box loaded with rare earth permanent magnetic alloy flakes orderly through a hydrogen absorption chamber, having a temperature of 50-350° C. for absorbing hydrogen, a heating and dehydrogenating chamber, having a temperature of 600-900° C. for dehydrogenating, and a cooling chamber of the continuous hydrogen pulverization equipment; receiving the charging box by a discharging chamber through a discharging valve; pouring out the alloy flakes after the hydrogen pulverization into a storage tank at a lower part of the discharging chamber; sealing up the storage tank under a protection of nitrogen; and, moving the charging box out through a discharging door of the discharging chamber and re-loading, for repeating the previous steps.
Abstract:
A continuous hydrogen pulverization method of a rare earth permanent magnetic alloy includes: providing a hydrogen adsorption room, a heating dehydrogenation room and a cooling room in series, applying hydrogen adsorption, heating dehydrogenation and cooling on a rare earth permanent magnetic alloy in the production device at the same time, wherein collecting and storing under an inert protection atmosphere can also be provided. Continuous production is provided under vacuum and the inert protection atmosphere in such a manner that an oxygen content of the pulverized powder is low and a proportion of single crystal in the powder is high.
Abstract:
The present invention discloses manufacturing methods of a powder for compacting rare earth magnet and rare earth magnet that omit jet milling process, which comprise the steps as follows: 1) casting: casting the molten alloy of rare earth magnet raw material by strip casting method to obtain a quenched alloy with average thickness in a range of 0.2˜0.4 mm; 2) hydrogen decrepitation: decrepitating the quenched alloy hydrogen under a hydrogen pressure between 0.01˜1 MPa for 0.5˜24 h to obtain the powder. The present invention improves the manufacturing processes which are before the process of jet milling for omitting the process of jet milling, thus simplifying the process; which may also acquire a low cost production by efficiently using the precious rare earth resource.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for recycling magnetic material to restore or improve the magnetic performance One of the methods includes fragmenting magnetic material to form a powder, mixing the powder with a) a rare earth material R and b) an elemental additive A to produce a homogeneous powder, wherein the rare earth material comprises at least one of: i) Nd, ii) Pr, and iii) Dy, and the elemental additive A comprises at least one of: i) Co, ii) Cu, and iii) Fe, and sintering and magnetizing the homogenous powder to form a Nd—Fe—B magnetic product.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for recycling magnetic material. One of the systems includes a system for harvesting a waste magnet from an end-of-life product, the system comprising a positioning mechanism that defines a recess to receive and locate the end-of-life product relative to the positioning mechanism, the end-of-life product including the waste magnet, a separating station to substantially separate a portion of the end-of-life product containing the waste magnet from the remainder of the end-of-life product when the positioning mechanism moves the respective end-of-life product through the separating station, and a transport station that receives the portion of the end-of-life product containing the waste magnet from the positioning mechanism when the positioning mechanism moves the respective end-of-life product to the transport station.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for recycling magnetic material. One of the systems includes a system for harvesting a waste magnet from an end-of-life product, the system comprising a positioning mechanism that defines a recess to receive and locate the end-of-life product relative to the positioning mechanism, the end-of-life product including the waste magnet, a separating station to substantially separate a portion of the end-of-life product containing the waste magnet from the remainder of the end-of-life product when the positioning mechanism moves the respective end-of-life product through the separating station, and a transport station that receives the portion of the end-of-life product containing the waste magnet from the positioning mechanism when the positioning mechanism moves the respective end-of-life product to the transport station.
Abstract:
R-T-B-based rare earth magnet particles are produced by an HDDR treatment which comprises a first stage HD step of heating particles of a raw material alloy having a composition of R, B and Co in an inert atmosphere or in a vacuum atmosphere and then replacing the atmosphere with a hydrogen-containing gas atmosphere in which the raw material alloy particles are held in the same temperature range and a second stage HD step of heating a material obtained in the first stage HD step in which the material is held in the hydrogen-containing gas atmosphere.
Abstract:
The present invention is directed to a method for preparing a permanent magnet, and more specifically, to a method for preparing a high-performance sintered Nd—Fe—B permanent magnet, in order to solve the problems of increased brittleness or high cost present in the permanent magnet prepared by the existing process. A method for preparing a sintered Nd—Fe—B permanent magnet includes the following steps: (1) ingredient calculation and raw material preparation in which calculating ingredients and preparing raw materials according to the ingredient formula of the resultantly sintered Nd—Fe—B permanent magnet in mass fraction, i.e., (NdA−XREX)A(Febal−yMy)balB0.95˜1.03, in which A %+(0.95˜4.03)%+bal %=100%; then dividing the raw materials into a rare earth Fe—B compound and rare earth metals, the formula of the rare earth Fe—B compound in mass fraction being (Nd28−aREa)28(Febal−yMy)balB0.95˜1.03 and that of the rare earth metals being (NdA−28−bREb)A−28.