Abstract:
An object of the present invention is to provide a composition including magnetic powder having excellent fluidity and sufficient curing speed, and the present invention is a thermosetting composition including a crystalline radical polymerizable compound having a melting point in the range of 30 to 150° C. and magnetic powder.
Abstract:
Permanent magnets and methods of making the same are disclosed herein. The permanent magnets include a 3D-printed, i.e., additively manufactured, framework and an infiltrate such that there is a discrete magnetic phase and a discrete non-magnetic phase or two discrete magnetic phases. The infiltrate may provide superior strength, elasticity or magnetic properties.
Abstract:
The permanent magnet includes: a main phase expressed by a composition formula: RMZNX and having at least one crystal structure selected from the group consisting of a Th2Ni17 crystal structure, a Th2Zn17 crystal structure, and a TbCu7 crystal structure; and a sub phase having a phosphorus compound phase containing a phosphorus compound excluding a phosphoric acid compound.
Abstract:
This invention provides for a rotary electric machine that includes a rotor having a plurality of permanent magnets arranged in the circumferential direction, and in which the leakage of magnetic flux can be suppressed with a simple structure; and a rare-earth permanent magnet-forming sintered compact for forming rare-earth permanent magnets to be used in said rotary electric machine.
Abstract:
A rare earth permanent magnet is prepared by immersing a portion of a sintered magnet body of R1—Fe—B composition (wherein R1 is a rare earth element) in an electrodepositing bath of a powder dispersed in a solvent, the powder comprising an oxide, fluoride, oxyfluoride, hydride or rare earth alloy of a rare earth element, effecting electrodeposition for letting the powder deposit on a region of the surface of the magnet body, and heat treating the magnet body with the powder deposited thereon at a temperature below the sintering temperature in vacuum or in an inert gas.
Abstract:
An oxide superconducting bulk magnet able to prevent breakage of a superconducting bulk member and able to give a sufficient amount of total magnetic flux at a superconducting bulk member surface even under high magnetic field strength conditions, comprising an oxide superconducting bulk laminate formed from sheet-shaped oxide superconducting bulk members and high strength reinforcing members arranged between the stacked oxide superconducting bulk members, the outer circumference of the oxide superconducting bulk laminate being provided with an outer circumference reinforcing member.
Abstract:
A rare earth magnet having a main phase and a sub-phase, wherein the main phase has a ThMn12-type crystal structure; the sub-phase contains at least any one of an Sm5Fe17-based phase, an SmCo5-based phase, an Sm2O3-based phase, and an Sm7Cu3-based phase; assuming that the volume of the rare earth magnet is 100%, the volume fraction of the sub-phase is from 2.3 to 9.5% and the volume fraction of an α-Fe phase is 9.0% or less; and the density of the rare earth magnet is 7.0 g/cm3 or more.
Abstract:
Disclosed is a sintered NdFeB magnet having high coercivity (HcJ) a high maximum energy product ((BH)max) and a high squareness ratio (SQ) even when the sintered magnet has a thickness of 5 mm or more. The sintered NdFeB magnet is produced by diffusing Dy and/or Tb in grain boundaries in a base material of the sintered NdFeB magnet by a grain boundary diffusion process. The sintered NdFeB magnet is characterized in that the amount of rare earth in a metallic state in the base material is between 12.7 and 16.0% in atomic ratio, a rare earth-rich phase continues from the surface of the base material to a depth of 2.5 mm from the surface at the grain boundaries of the base material, and the grain boundaries in which RH has been diffused by the grain boundary diffusion process reach a depth of 2.5 mm from the surface.
Abstract:
The present invention provides a rare earth thin film magnet having Nd, Fe, and B as essential components, wherein the rare earth thin film magnet has a texture in which an α-Fe phase and a Nd2Fe14B phase are alternately arranged three-dimensionally, and each phase has an average crystal grain size of 10 to 30 nm. An object of this invention is to provide a rare earth thin film magnet having superior mass productivity and reproducibility and favorable magnetic properties, as well as to provide the production method thereof and a target for producing the thin film.
Abstract:
A magnet manufacturing method has a step of preparing mixed powder of magnetic powder of a hard magnetic material, which includes one or more of an Fe—N-based compound and an R—Fe—N-based compound and a lubricant that allows formation of an adsorption film on a surface of the magnetic powder, a step of heating the mixed powder at a temperature that is equal to or higher than a melting point of the lubricant and that is lower than a decomposition temperature of the magnetic powder to form the adsorption film of the lubricant on the surface of the magnetic powder, a step of pressurizing and molding the magnetic powder in order to obtain a primary molding, and a step of heating the primary molding at a temperature that is lower than the decomposition temperature of the magnetic powder.