Abstract:
A novel electron multiplier that regulates in real time the gain of downstream dynodes as the instrument receives input signals is introduced. In particular, the methods, electron multiplier structures, and coupled control circuits of the present invention enable a resultant on the fly control signal to be generated upon receiving a predetermined threshold detection signal so as to enable the voltage regulation of one or more downstream dynodes near the output of the device. Accordingly, such a novel design, as presented herein, prevents the dynodes near the output of the instrument from being exposed to deleterious current pulses that can accelerate the aging process of the dynode structures that are essential to the device.
Abstract:
A microchannel plate includes a substrate defining a plurality of channels extending from a top surface of the substrate to a bottom surface of the substrate. A resistive layer is formed over an outer surface of the plurality of channels that provides ohmic conduction with a predetermined resistivity that is substantially constant. An emissive layer is formed over the resistive layer. A top electrode is positioned on the top surface of the substrate. A bottom electrode positioned on the bottom surface of the substrate.
Abstract:
Provided are an electron multiplier electrode using a secondary electron extraction electrode and a terahertz radiation source using the electron multiplier electrode. The electron multiplier electrode includes: a cathode; an emitter disposed on the cathode and extracting electron beams; a gate electrode for switching the electron beams, the gate electrode being disposed on the cathode to surround the emitter; and a secondary electron extraction electrode disposed on the gate electrode and including a secondary electron extraction layer extracting secondary electrons due to collision of the electron beams.
Abstract:
A metal side tube (2), a glass faceplate (3), and a stem plate (4) constitute a hermetically sealed vessel (5) for a photomultiplier tube. An edge portion (20) is provided at on open end (A) of the side tube (2). The edge portion (2) is embedded in the faceplate (3) in such a manner as to strike on the faceplate (3). Accordingly, high hermeticity at a joint between the side tube (2) and the faceplate (3) is ensured. The edge portion (20) extends upright in an axial direction of the side tube (2), so that the edge portion (20) can be embedded as close to a side face (3c) of the faceplate (3) as possible. This structure increases an effective sensitive area of the faceplate (3) to nearly 100%, and decreases dead area as close to 0 as possible. As described above, the photomultiplier tube (1) according to the present invention has enlarged effective sensitive area of the side tube (3) and enhanced hermeticity of the joint between the faceplate (3) and the side tube (2).
Abstract:
A photomultiplier tube unit including photomultiplier tubes densely assembled and thereby having an improved light sensing efficiency. The outer surfaces (2b) of metal side tubes (2) of photomultiplier tubes (1) are in facial contact with one another, and thereby a high-density arrangement of photomultiplier tubes (1) are achieved. The side tubes (2) can be electrically connected to one another, and therefore the side tubes (2) can be easily made equipotential. As a result, it is unnecessary to electrically connect the stem pin (10) to the side tube (2) of each photomultiplier tube (1), facilitating the assembling of the photomultiplier tube unit. When a required photomultiplier tube (1) in a device (e.g., a gamma camera) having thus-united multiple photomultiplier tubes is replaced with a new one, the troublesome work of replacing photomultiplier tubes one by one is obviated, simplifying the replacement work.
Abstract:
The present invention relates to a magnetic shielding case comprising a structure for improving the uniformity in light receiving sensitivity of a phomultiplier while maintaining sufficient magnetic shielding function, and a light detecting apparatus including this magnetic shielding case. This apparatus comprises a photomultiplier and a magnetic shielding case accommodating the photomultiplier. In particular the magnetic shielding case comprises a housing having an opening for transmitting therethrough light to be detected which is directed to the photomultiplier; a lens element for guiding the light to be detected into an effective region on a photocathode; and a positioning structure for placing the photomultiplier at a desired position with respect to the lens element.
Abstract:
A photomultiplier is constituted by a photocathode and an electron multiplier having a typical structure in which a dynode unit having a plurality of dynode plates stacked in an incident direction of photoelectrons, an anode plate, and an inverting dynode plate are sequentially stacked. Through holes for injecting a metal vapor are formed in the inverting dynode plate to form secondary electron emitting layers on the surfaces of dynodes supported by the dynode plates, and the photocathode. With this structure, the secondary electron emitting layers are uniformly formed on the surfaces of the dynodes. Therefore, variations in output signals obtained from anodes can be reduced regardless of the positions of the photocathode.
Abstract:
In a photomultiplier tube, a second dynode Dy2 is located in confrontation with a first dynode Dy1 in an electron multiplication portion 6. The second dynode Dy2 is made of material that has a secondary electron emission gain which is substantially saturated with respect to an electric voltage applied thereto.
Abstract:
There is provided a photomultiplier in which a transmittance of an incident light and a photosensitivity is high and a hysteresis characteristic is excellent. Therefore, in the present invention, a photocathode 16, dynodes 17a to 17c and an anode 18 are supported between insulating material substrates 12a and 12b provided in a glass bulb 11. A transparent conductive film 19 is formed on an inside wall surface of a light entrance portion 15. The transparent conductive film 19 electrically contacts with a pad 20 which is led through a terminal 14 to the outside. The same potential as the photocathode 12 is applied through the pad 20 to the transparent conductive film 19. The incident light directly impinges on the photocathode 16 through the glass bulb 11 and the transparent conductive film 19 at a place corresponding to the light entrance portion 15. As a result, the incident light reaches the photocathode 12 with not being interfered at all, and the transmittance of the incident light is improved. Since a predetermined potential is applied to the transparent conductive film 19, the change of the potential of the inside wall surface of the glass bulb 11 is performed at high speed, and the hysteresis becomes extremely small.
Abstract:
The present invention pertains to a photomultiplier of head-on type that has a transparent tubular glass bulb and a principal photocathode formed on the internal surface of a closed end of the glass bulb, that is, on the internal surface of a light entrance window. In addition, this photomultiplier has a side photocathode formed on the entire internal surface of side wall of the glass bulb in the region adjacent to the principal photocathode. A reflection film is formed on the outer surface of side wall of the glass bulb and opposes to the side photocathode. Some light entering the peripheral portion of the light entrance window of the glass bulb and traveling toward the outer surface of side wall is reflected inwardly by the reflection film and reaches the side photocathode, where the light is to be converted into photoelectrons. The photoelectrons are guided to the electron multiplying unit in glass bulb, where the photoelectrons are multiplied and detected by an anode.