Abstract:
Components of scientific analytical equipment. More particularly, ion detectors of the type which incorporate electron multipliers and modifications thereto for extending the operational lifetime or otherwise improving performance. The ion detector may be embodied in the form of a particle detector having one or more electron emissive surfaces and/or an electron collector surface therein, the particle detector being configured such that in operation the environment about the electron emissive surface(s) and/or the electron collector surface is/are different to the environment immediately external to the detector.
Abstract:
An apparatus for generating and focusing electrons is provided. The apparatus has an emissive material configured to emit an electron, an electron target, and an electrical potential gradient generator configured to generate an electrical potential gradient within the emissive material. The electrical potential gradient is oriented so as to vary from positive to negative in the general direction toward the electron target. In operation, an electron emitted from the emissive materials is deflected away from the emissive material and generally toward the electron target. The apparatus may be incorporated in scientific analytical equipment such as an electron multiplier.
Abstract:
Provided is a time-of-flight mass spectrometer including: an ionization part receiving electron beams to thereby emit ions; a cold electron supply part injecting the electron beams to the ionization part; an ion detection part detecting the ions emitted from the ionization part; and an ion separation part connecting the ionization part and the ion detection part, wherein the cold electron supply part includes a microchannel plate receiving ultraviolet rays to thereby emit the electron beams, the ions emitted from the ionization part pass through the ion separation part to thereby reach the ion detection part, and the ion separation part has a straight tube shape.
Abstract:
A photomultiplier includes a tube and plurality of dynodes within the tube and including at least one first dynode and at least one second dynode. A respective insulator is between adjacent pairs of dynodes. The at least one first dynode includes a conductive outer ring and a medial conductive member coupled to the conductive outer ring in spaced relation therefrom. The at least one second dynode includes a conductive outer ring and a conductive inner ring supported within the conductive outer ring.
Abstract:
Apparatus for amplifying a stream of primary charged particles comprises a body defining a chamber and an entrance aperture for receiving the stream of primary charged particles into the chamber, and an incident dynode, adapted to be charged to a pre-determined electrical potential, having a surface positioned in the chamber to be impacted by said primary charged particles at an angle of incidence greater than 30° from the surface normal and in response to the impact to generate a stream of secondary charged particles.
Abstract:
Apparatus for amplifying a stream of primary charged particles comprises a body defining a chamber and an entrance aperture for receiving the stream of primary charged particles into the chamber, and an incident dynode, adapted to be charged to a pre-determined electrical potential, having a surface positioned in the chamber to be impacted by said primary charged particles at an angle of incidence greater than 30° from the surface normal and in response to the impact to generate a stream of secondary charged particles.
Abstract:
An image intensifier and electron multiplier therefor is disclosed. Photons of an image impinge a photo-cathode that converts the photons to electrons. An electron multiplier multiplies the electrons from the photo-cathode to create an increased number of electrons. A sensor captures the increased number of electrons to produce an intensified image. The electron multiplier is an electron bombarded device (EBD) containing a semiconductor structure. The semiconductor structure has an input surface for receiving electrons and an emission surface for passing an increased number of electrons. The semiconductor structure is doped to direct the flow of electrons through the semiconductor structure to an emission area on the emission surface.
Abstract:
The cathode for photo-electron emission 5 is comprised of an alkali metal containing layer 5d made of material for emitting photo-electrons by the entry of light or for emitting secondary electrons by the entry of electrons, such as particles which consist of an alkali antimony compound, on an Ni electrode substrate 5c on which an Al layer 5b is deposited, and has an intermediate layer 5a made of carbon nano-tubes between the alkali metal containing layer 5d and the Ni electrode substrate 5c, therefore the defect density inside the particles is decreased, and the recombining probability of electrons and holes drops remarkably, which improves the quantum efficiency.
Abstract:
A method for fabricating an electron multiplier is provided. The method consists of depositing a random channel layer on a substrate such that the random channel layer is capable of producing a cascade secondary electron emission in response to an incident electron in the presence of an electric field.